
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

11

Comparison of Advance Tree Data Structures

Parth Patel

Student - Master of Engineering
CSED, Thapar University

Patiala, India

Deepak Garg
Associate Professor

CSED, Thapar University
Patiala, India

ABSTRACT

B-tree and R-tree are two basic index structures; many

different variants of them are proposed after them. Different

variants are used in specific application for the performance

optimization. In this paper different variants of B-tree and R-

tree are discussed and compared. Index structures are different

in terms of structure, query support, data type support and

application. Index structure’s structures are discussed first. B-

tree and its variants are discussed and them R-tree and its

variants are discussed. Some structures example is also shown

for the more clear idea. Then comparison is made between all

structure with respect to complexity, query type support, data

type support and application.

Keywords

Index structures, B-tree, R-tree, Variants, query type,

complexity.

1. INTRODUCTION
Index is a data structure enables sub linear time lookup and

improves performance of searching. A data store contains N

objects we want to retrieve one of them based on value.

Number of operation in worst case is Ω (n). In real life data

store contain millions of data for real world objects and

searching is most common and always use to retrieval of data.

So, to improve this performance indexing of data is required.

Many index structure have O(log(N)) complexity and in some

application it is possible to achieve (O(1)). There are many

different index structures use for this purpose. Main goal of

indexing is to optimize the speed of query [20]. For any type

of search or retrieval of information we ask a query and query

is process by database system or search engine internally

process query on database of different content. Different

index structures are there. B-tree and R-tree are basic and

most common index structures. They have some disadvantage

so their variants are introduced and used. Actually data are not

only in linear form they are multidimensional and different

type like document, media etc. Main goal of indexing is to

optimize the speed of query. For any type of search or

retrieval of information we ask a query and query is process

by database system or search engine internally process query

on database of different content. A number of indexing

structure are proposed for various application. A good index

structure has ability to collect similar data into same portion.

Index structure classifies data into the same cluster for

consistency. Some of the index structures that are widely used

and some are more application or query type specific. In this

paper introduction to basic data structure B-tree and R-tree

their application, advantage and disadvantage. What are the

changes made into the basic index structure for improvement?

The paper is organized as follows in section 2 structure of B-

tree and R-tree are described. Section 3 variants of B-tree and

R-tree are discussed. Section 4 comparison between different

index structures based on their performance and their

application. In section 5 conclusion and future scope.

2. B-TREE AND R-TREE
The data structure which was proposed by Rudolf Bayer for

the Organization and Maintenance of large ordered database

was B-tree [12]. B-tree has variable number of child node

with predefined range. Each time node is inserted or deleted

internal nodes may join and split because range is fix. Each

internal node of B-tree contains number of keys. Number of

keys chosen between d and 2d, d is order of B-tree. Number

of child node of any node is d+1 to 2d+1. B-tree keeps record

in sorted order for traversing. The index is adjusted with

recursive algorithm. It can handle any no of insertion and

deletion. After insertion and deletion it may require

rebalancing of tree.

As per Knuth’s definition [6], B-tree of order n (maximum

number of children for each node) is satisfied following

property:

1. Every node has at most n children.

2. Every node has at least n/2 children.

3. The root has at least two children if it is not a child node.

4. All leaf node at the same level.

5. A non-Leaf node have n children contains n-1 keys.

It best case height of B-tree is logmn and worst case height is

logm/2n. Searching in B-tree is similar to the binary search

tree. Root is starting then search recursively from top to

bottom. Within node binary search is typically used. Apple's

file system HFS+, Microsoft's NTFS [8] and some Linux file

systems, such as btrfs and Ext4, use B-trees. B+-tree, B* tree

and many other improved variants of B-tree is also proposed

for specific application or data types. B-tree is efficient for the

point query but not for range query and multi-dimensional

data [4].

Spatial data cover space in multidimensional not presented

properly by point. One dimensional index structure B-tree do

not work well with spatial data because search space is

multidimensional. R-tree was proposed in 1982 by Antonin

Guttman. It is dynamic index structure for the spatial

searching [1]. It represent data object in several dimension. It

is height balanced tree like B-tree. Index structure is dynamic;

operation like insertion and deletion cam be intermixed with

searching.

Let M be the maximum number of entries in one node and

minimum number of entries in a node is m≤ M/2. R-tree

satisfies following properties [1]:

1. Each leaf node(Unless it is root) have index record between

 m and M.

2. Each index record (I, tuple- identifier) in a leaf node. I is

 smallest rectangle represented by the indicated tuple and

 contains the n- dimensional data object.

3. Each non-leaf (unless it is root) has children between m and

 M.

4. Each entry in non-leaf node (I, child pointer), I contain the

 rectangle in the child node is the smallest rectangle.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

12

5. The root node (unless it is children) at least two children.

6. All leaves appear on the same level.

Fig 1 and Fig 2 show structure of R-tree and relation exist

between its rectangles [1].

The searching is similar to the B-tree. More than one sub tree

under a node may need to be searched, hence not guarantee

worst-case performance. Inserting records is similar to

insertion in B-tree. New records are added and overflow result

into split and splits propagate up the tree. Relational database

systems that have conventional access method, R-tree is easy

to add. R-tree give best performance when it is 30-40 % full

because more complex balancing is require for spatial data.

Disadvantage of space wastage in R-tree variant of R-tree

were also proposed. R+-tree, R*-tree, Priority R-tree, Hilbert

tree, X-tree etc.

 R1 R2

 R3 R4 R5 R6 R7 R8 R9

 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21

Fig 1: Structure of R-tree

 R1 R4 R6

 R

 R3 R11 R R5 15

 14

 R10 R12 R16

 R2 R13 R9 R20

 R7 R18

 R19

 R18 R21

 R17

Fig 2: Overlapping relation between rectangles

3. VARIANTS OF B-TREE AND R-TREE

3.1 Variants of B-tree
B+-tree is similar to the B-tree the difference is all records are

stored at leaf level and only keys stored in non-leaf nodes.

Order of B+-tree b is capacity of node, number of children to

a node referred as m, constrained for internal node that

([b)⁄2]≤m≤b. The root allowed having as few as 2 children;

the numbers of keys are at least b-1 and at most b. No paper

on B+-tree but a survey of B-tree also covering B+-tree [6].

Figure 3 shows B+-tree example.

B+-tree is widely use in most of the rational database system

for metadata indexing and also useful for the data stored in the

RAM.

To keep internal node more densely packed B*-tree balance

more internal neighbor nodes [6]. This require non-root node

to be at least 2/3 fill. When both nodes are full they split into

three, single node gets full then it shares with the next node.

UB-tree [8] is proposed for storing and retrieving the

multidimensional data. It is like B+-tree but records are stored

according to Z-order or called Morton order. The algorithm

provided for the range search in the multidimensional point

data is exponential with dimension so not feasible.

H-tree is a special index structure similar to B-tree but use for

directory indexing. It has constant depth of one or two levels

and do not require balancing, use a hash of a file name. It is

use in Linux file system ext3 and ext4.

ST2B-tree: A Self-Tunable Spatio-Temporal B+-tree Index

for Moving Objects [9]. It is built on B+-tree without change

in insertion and deletion algorithms. It index moving objects

as 1d data points. 1d key has two components: KEYtime and

KEYspace. Object is updated once in a time ST2B-tree splits

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

13

tree into two sub trees. Logically it splits B+-tree and each sub

tree assign a range. A moving object is a spatial temporal

point in natural space. For index in the space data space is

partitioned into the disjoint regions in terms of reference

point’s distance. In this structure reference point and grid

granularity are tunable. ST2B-tree meets two requirements:

1. Discriminate between regions of different densities.

2. Adapt to density and distribution changes with time.

Use B+-tree for the multinational data need to reduce

dimension and data density and granularity of space partition

wield a joint effect on the index performance.

Compact B+-tree [7] is variant of B+-tree which organize data

in more compact way via better policy. The basic idea is to

use vacant space of the siblings before the overflow happen in

the node. Base on this data can accommodate in external

structure before splitting operation is require. Figure C and

Figure D shows presentation of data sequence {10, 18, 9, 4, 3,

12, 22, 28, 5, 2, 17, 11} for comparison. The result compact

B+-tree requires only 6 split and 9 nodes and space utilization

is (17/18). On the other hand our conventional B-tree required

9 split and 12 nodes and space utilization is (19/24). This is

better policy for the insertion and split operation in traditional

index eliminate.

Many other variant of B-tree is also there which are not

discussed in this. They are either application specific or data

specific.

 Step 1,2 10 18

 Step 3 10

 9 10 18
 Insert 9

 9 10

 Step 4

 4 9 10 18

 Insert 4

 9

 Step 5

 4 10

 3 4 9 10 18

 Insert 3

 9

 Step 6

 4 10

 3 4 9 10 12 18

 Insert 12

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

14

 9

 Step 7

 4 10 18

 3 4 9 10 12 18 22
 Insert 22

 9

 Step 8,9

 4 10 18

 3 4 5 9 10 12 18 22 28
 Insert 5 Insert 28

 9

 Step 10

 3 4 10 18

 2 3 4 5 9 10 12 18 22 28
 Insert 2

 9 17

 Step 11

 3 4 10 18

 2 3 4 5 9 10 12 17 18 22 28

 Insert 17

 9 17

 Step 12

 3 4 10 12 18

 2 3 4 5 9 10 11 12 17 18 22
 Insert 11

Fig 3: Conventional B+-tree

 Step 1,2 10 18

 Insert 10, Insert 18

 10

 Step 3

 9 10 18

 Insert 9

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

15

 9

 Step 4

 4 9 10 18

 Insert 4

 4 9

 Step 5

 3 4 9 10 18

 Insert 3

 4 10

 Step 6

 3 4 9 10 12 18
 Insert 12

 10

 Step 7

 4 18

 3 4 9 10 12 18 22

 Insert 22

 10

 Step 8

 4 18

 3 4 9 10 12 18 22 28

 Insert 28

 10

 Step 9

 4 9 18

 3 4 5 9 10 12 18 22 28
 Insert 5

 10

 Step 10

 3 5 18

 2 3 4 5 9 10 12 18 22 28

 Insert 2

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

16

 10

 Step 11

 3 5 17 18

 2 3 4 5 9 10 12 17 18 22 28

 Insert 17

 10

 Step 12

 3 5 12 18

 2 3 4 5 9 10 11 12 17 18 22 28

 Insert 11

Fig 4: Compact B+-tree

3.2 Variants of R-tree
R+-tree is a variant of R-tree differs from it in 1. Nodes are

not guaranteed to be at least half filled. 2. Entries of internal

node do not overlap. 3. Object id may be stored in more than

one leaf node. R+-tree searching follows single path fewer

nodes are visited than R-tree. But data are duplicated over

many leaf node structure of R+-tree can be larger than R-tree.

Figure 5 show R+-tree and its relation between rectangles.

 H J

 E F K

 A G B I

 L M

 D C

 P N

 O

 A B C D

 E F G F H I J J K L M N O P

Fig 5: R+-tree

R*-tree [11] is also variant of R-tree its results shows that it

outperform the traditional R-tree in query processing and
performance. It tested parameter area, margin and overlap in

different combination. To calculate overlap at each entry and

with very distance rectangles probability of overlap is very

small. For splitting of node R*-tree first sort lower values and

then upper values of the rectangles then two group are

determined. Choose goodness of value for the final

distribution of entries. Three goodness value and different

approaches using them in different combination are tested. 1.

Area-value, 2.Margin-value, 3.Overlap-value. R*-tree is very

robust in compare to other ugly data distribution. It’s one of

costly operation is reinsertion but it reduce the split operation.

Storage utilization is higher than variants of R-tree but

implementation cost is higher than R-tree.

X-tree [14] and M-tree [10] are other variants of R-tree use for

the same multidimensional data. Construction of M-tree is

fully parametric on distance function d and triangle inequality

for efficient queries. It has overlap of regions and no strategy

to avid overlap. Each node there is radios r, every node n and

leaf node l residing in node N is at most distance r from N. It

is balanced tree and not requires periodical reorganization.

X-tree prevents overlapping of bounding boxes. Which is

problem in high dimension, node not split will be result into

super-nodes and in some extreme cases tree will linearize.

Hilbert R-tree [5], R-tree variant is used for indexing of object

like line, curve, 3-D object and high dimension future based

parametric objects. It use quad tree and z-ordering, quad tree

divides object into quad tree blocks and increase no of item. It

use space filling curves and specifically the Hilbert curve

achieve best clustering Figure 6 [5] show Hilbert curve. These

goals can achieve for every node (a) store MBR (minimum

bounding rectangle), (b) the Largest Hilbert Value of the data

rectangles that being to the sub tree with root [5]. Leaf node

entries of the form (R, obj_id) where R is MBR of real object

and obj_id is pointer to object record. A non- leaf node entries

of the form (R, ptr, LHV) where R is MBR, ptr is pointer to

child node and LHV is Largest Hilbert value among data

rectangle enclose by R. It give 285 of the saving over the best

competitor R*-tree on Real data.

 5 6 9 10

 2 3

 4 7 8 11

 1 4

 3 2 13 12

 H1

 0 1 14 15

 H2

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

17

 H3

Fig 6 : Hilbert curves of order 1,2 and 3

Bloom filter base R-tree (BR-tree) [19] in which bloom filter

is integrated to R-tree node. BR-tree is basically R-tree

structure for supporting dynamic indexing. In it each node

maintains range index to indicate attribute of existing item.

Range query and cover query supported because it store item

and range of it together. A Bloom filter is a space-efficient

data structure to store an index of an item and can represent a

set of items as a bit array using several independent hash

functions [16]. Figure 7 [19] show proposed BR-tree

structure. BR-tree node is combination of R-tree node and

Bloom filter.

BR-tree is also load balanced tree. Overloaded bloom filter

produce high false positive probabilities. It reconfigures the

multidimensional range using bounding boxes to cover item.

BR-tree support Bound query the first index structure to talk

about the bound query. Bound query result into range

information of multidimensional attribute of a queried item. It

is not trivial because BR-tree maintains advantage of Bloom

filter and R-tree both. It mixes the queries like bound query

and range query after point query result is positive. BR-tree

keep consistency between queried data and the attribute bound

in an integrated structure so that fast point query and accurate

bound query possible. Figure 8 [19] shows example of

multiple queries on BR-tree.

Fig 7[19] : BR-tree Example

 p1 p6

 r1 BR5 Range Query

 p5

 BR3 p7 BR7 r4

 p2 r5

 p11

 p8

 BR1 X

 r3 p10

 p3 BR2

 r2

 BR6 Point Query

 p9

 p4 Bound Query Cover Query

Fig 8[19] : An example of multiple query in BR-tree

r2 p3 p4 p5 p6 p7 p8 r3 p9 p10 r4 r5

p4

p1 r1 p2

BR6 BR7 BR3 BR4 BR5

BR0

BR1 BR2

r2

 BR4

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

18

QR+-tree [7] is hybrid structure of Quad tree (Q-tree) [11] and

R-tree. First rough level partition of index space using Q-tree

and then use R-tree to index space object. QR+-tree

subdivides the spatial area and constructs the first level index.

Construction algorithm of second level is improvement

splitting algorithm on R-tree. Each quad has a pointer refer to

the root and if quad does not have R-tree then pointer will be

null. Figure 9 [7] shows the flat chart of QR+-tree and Figure

10 [7] shows the structure chart of QR+-tree.

QR+-tree does not have the redundant index information that

allows index to store the data directly and save the storage

space. Fast and adjustable index makes query processing

efficient.

 ID0 HR1 VR1

 ID1 ID2 ID3 R11 R12 R7 R2 R5 R10

 ID1 HR2 VR2 ID2 HR3 VR3

 R1 R3 R4 R6

 ID3 HR4 VR4

 R9 R8

Fig 9 [7] : Flat chart of QR+-tree

 ID0

 R5

 R1`

 R2 VR3 R6

 VR2

 R3 R4

 HR1

 R12 R7

 HR4 R8

 R11

 R10

 R9

 VR1

Fig 10 [7] : Structure chart of QR+-tree

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

19

4. COMPARISON BETWEEN INDEX

STRUCTURES

4.1 Query type
Basically 4 types of query are there Point query, range query,

bound query and cover query.

4.2 Data type
Two types of data are there linear and multidimensional.

Multidimensional data represent the object like curves,

rectangles, 3-D objects. Spatial data and high dimensional

data are part of multidimensional data.

4.3 Complexity
Each and every data structure has complexity in terms of

space and time. Most of the index structures have time

complexity in terms of O(log n). But different index structures

have different factor, terms and condition on algorithm.

4.4 Application
Different index structures are used for the different

application for the efficient performance and some structures

are introduced for the specific application only.

Table 1. Comparison between Index Structures

Index Structure Query type Data type Complexity Application

B-tree Point query [1] Linear data [1] O(log n) Apple's file system

HFS+, Microsoft’s

NTFS and some Linux file

systems, such as btrfs and

Ext4.

B+-tree Point query [3] Linear data [3] O(log n) Most of the database

management systems like

IBM DB2, Microsoft My

Sql, Oracle 8, Sybase ASE

etc.

B*-tree Point query [3] Linear data [3] O(log n) use space

more efficiently than

B+-tree

HFS and Reiser4 file

systems

UB-tree Point query, Range

query [18]

Linear data,

multidimensional data

[18]

O(log n) but not

feasible for

multidimensional data

Multidimensional range

search.

H-tree Point query Linear data O(log n) utilize space

more efficiently.

Ext3, ext4 Linux file

systems.

ST2B-tree Range query, k-NN

query [15]

Multidimensional data

[15]

Work more efficiently

for the moving object

data.

Application with

multidimensional data but

now not use because other

data structure outperform it.

Compact B-tree Point query [4] Linear data [4] O(log n) but use space

more efficiently than

B-tree

In place of B-tree.

R-tree Range query [1] Multidimensional data

[1]

Not utilize space more

efficiently, not have

worst case time

complexity.

Real world application like

navigation system etc.

R+-tree Range query [16] Multidimensional data

[16]

Non overlapping data

utilize space efficiently

than R-tree

Multidimensional data

object

R*-tree Point query, Range

query [9]

Spatial data,

multidimensional data

[9]

Implementation cost is

more than other R-tree

variants but robust in

data distribution than

other ugly structures.

Application with data in

form of points and

rectangles

X-tree Range query [14] Multidimensional data,

High dimensional data

[14]

In some extreme cases

tree become linear and

time complexity O(n)

High dimension data

M-tree Range query, k-NN

query [10]

Multidimensional data

[10]

Not require periodic

reorganization, time is

less in construction.

k-NN query, application

use multidimensional

(spatial) access methods

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

20

[10]

Hilbert R-tree Range queries [5] Multidimensional data

[5]

Search cost give 28%

saving above R*-tree.

Cartography, Computer

Aided Design(CAD),

computer vision and

robotics etc. [5]

BR-tree Point query, Range

query, Cover query,

Bound query [19]

Linear data,

multidimensional data

[19]

O(≤ log n) Application require all four

type of query and also use

in distributed environment

[19].

QR+-tree Range query [7] Large scale spatial data

[7]

No redundant

information make

query processing more

efficient.

Large scale GIS database

[7].

5. CONCLUSION AND FUTURE SCOPE
Many variants of B-tree and R-tree are proposed and some of

them are used in the real world for the query and performance

optimization. Some index structure have less space

complexity, some have less time complexity and support

different data types. Most of them support point query and

single dimensional data efficiently but for range query and

multidimensional data specific structure is required and

support specific type of data. B-tree and its variants are

support point query and single dimensional data efficiently

while R-tree and its variants support multidimensional data

and range query efficiently. BR-tree support single

dimensional, multi-dimensional and all four type of query.

New index structure is proposed by making change in

previous structure with use of some other data structure like

hash function or use two good property of two different

structure. Like BR-tree use hash function and QR+-tree use of

Q-tree and R-tree. For optimize space complexity change in

existing algorithm is made. Like in Compact B-tree. In future

take idea from this and change existing index structure. For

new index structure change can be made in algorithm, use two

different index structure or use data structure or use of data

structure like hash in index construction.

6. REFERENCES
[1] A. Guttman,” R-trees: A Dynamic Index Structure for

Spatial Searching” Proc. ACM SIGMOD, pp. 47–57,

1984.

[2] B. Bloom, “Space/Time Trade Offs in Hash Coding with

Allowable Errors”, Communication of ACM, vol. 13, no.

7, pp. 422-426, 1970.

[3] Douglas Comer, "The Ubiquitous B-Tree", ACM

Computing Surveys, Vol 11, Fasc. 2, pp. 121–137, 1979.

[4] Hung-Yi Lin, “A Compact Index Structure with High

Data Retrieval Efficiency”, International Conference on

Service Systems and Service Management, pp. 1–5,

2008.

[5] I. Kamel, C. Faloutsos, “Hilbert R-tree: An improved R-

tree using fractals”, Proc. 20th International Conference

on Very Large Data Bases, pp. 500–509, 1994.

[6] Knuth, Donald, “Sorting and Searching, The Art of

Computer Programming”, Addison-Wesley, ISBN 0-

201-89685-0 , Vol. 3 (Second ed.), Section 6.2.4,

Multiway Trees, pp. 481–491, 1998.

[7] Mao Huaqing, Bian Fuling, “Design and Implementation

of QR+Tree Index Algorithms”, International

Conference on Digital Object Identifier, pp. 5987 - 5990,

2007.

[8] Mark Russinovich, "Inside Win2K NTFS, Part 1",

Microsoft Developer Network, Retrieved 2008-04-18.

[9] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger,

"The R*-tree: an efficient and robust access method for

points and rectangles", Proc. ACM SIGMOD

international conference on Management of data, pp.

322-331, 1990.

[10] Paolo Ciaccia, Marco Patella, Pavel Zezula, "M-tree An

Efficient Access Method for Similarity Search in Metric

Spaces", Proc. 13th International Conference on Very

Large Data Bases, 1997.

[11] R. A. Finkel, J. L. Bentley, “Quad trees: a data structure

for retrieval on composite keys”, Acta Informatica, vol 4,

pp. ll-9, 1974.

[12] R. Bayer, E. McCreight, "Organization and Maintenance

of Large Ordered Indexes", Acta Informatica, Vol. 1,

Fasc. 3, pp. 173–189, 1972.

[13] Ramakrishnan Raghu, Gehrke Johannes, “Database

Management Systems”, McGraw-Hill Higher Education,

edi. 2nd, pp. 267, 2000.

[14] Stefan Berchtold, D. A. Keim, Hans-Peter Kriegel, "The

X-Tree: An Index Structure for High-Dimensional Data",

Proc. 22th International Conference on Very Large Data

Bases, pp. 28–39, 1996.

[15] Su Chen, Beng Chin Ooi, Kian-Lee Tan, M. A.

Nascimento, “ST2B-tree: A Self-Tunable Spatio-

Temporal B+-tree Index for Moving Objects”, Proc.

ACM SIGMOD international conference on

Management of data, 2008.

[16] Timos K. Sellis, Nick Roussopoulos, Christos Faloutsos,

“The R+-Tree: A Dynamic Index for Multi-Dimensional

Objects”, Proc. VLDB 13th International Conference on

Very Large Data Bases, pp. 507-518, 1987.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.2, March 2012

21

[17] Tei-Wei Kuo, Chih-Hung Wei, Kam-Yiu Lam “Real-

Time Data Access Control on B-Tree Index Structures

Data Engineering”, Proc. 15th International Conference

on Data Engineering, pp. 458 – 467, 1999.

[18] V. Markl “MISTRAL: Processing Relational Queries

using a Multidimensional Access Technique”, Infix

Verlag, ISBN 3-89601-459-5, 1999.

[19] Yu Hua, Bin Xiao, Jianping Wang, “BR-Tree: A

Scalable Prototype for supporting Multiple Queries of

Multidimensional Data”, IEEE Transactions on

Computers, vol. 58, Issue 12, pp. 1585–1598, 2009.

[20] Ajit Singh, Dr. Deepak Garg "Implementation and

Performance Analysis of Exponential Tree Sorting"

International Journal of Computer Applications ISBN:

978-93-80752-86-3 Volume 24– No.3, pp. 34-38 June

2011.

http://www.gdeepak.com/pubs/Implementation%20and%20Performance%20Analysis%20of%20Exponential%20Tree%20Sorting.pdf
http://www.gdeepak.com/pubs/Implementation%20and%20Performance%20Analysis%20of%20Exponential%20Tree%20Sorting.pdf

