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Abstract: Prediction of coding region from genomic DNA sequence is the foremost step in the quest of gene 
identification. In the eukaryotic organism, the gene structure consists of promoter, intron, start codon, exon and stop 
codon, etc. In the prediction of splice site, which is the separation between exons and introns, the accuracy is lower than 
90% even when the sequences adjacent to the splice sites have a high conservation. Therefore, the algorithms used in the 
splice sites identification must be improved in order to recover the prediction accuracy. Hence, an efficient method, 
MM2F-SVM is proposed through this article, which consists of three stages – initial stage, in which a second order 
Markov Model (MM2) is used, i.e. feature extraction; intermediate, or the second stage in which principal feature analysis 
(PFA) is done, i.e. feature selection; and the final or the third stage, in which a support vector machine (SVM) with 
Gaussian kernel is used for final classification. While comparing this proposed MM2F-SVM model with the other existing 
splice site prediction programs, superior performance for the former has been noticed. 
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1. INTRODUCTION 

 Gene identification is one of the main objectives in 
genome sequencing. In the past few years, an elevated 
increase in the genomic primary sequence data for a broad 
range of organisms has been noticed [1]. The translation of 
data into knowledge is the key for future biological research 
and a great challenge as well. Watson and Crick [2] in 1953 
discovered the double-helical structure of DNA, and within 
short period, researchers achieved a detailed understanding 
of the molecular methodology involved in gene replication 
and expression. In 1970s, direct access to the sequence of 
gene became possible through the invention of DNA 
sequencing and cloning. An essential characteristic for gene 
finding in genome sequencing projects is the occurrence of 
splice sites in the gene sequences. In sequencing of known 
structural elements, the signals observed are explored by the 
latest available computational techniques. The key aspect in 
the systematic study of eukaryotic genes is the accurate 
prediction of the partition between exons and introns, i.e. the 
splice sites, which further depends largely on exactly 
locating the splice sites. 
 The basic structural and resourceful unit of all living 
organisms is called the cell, which may be classified into two 
types – eukaryotic and prokaryotic. The prokaryote cell is 
simpler and smaller than a eukaryote cell. The nucleus is 
present in eukaryote, not in prokaryote. In eukaryotic 
organism, the gene structure consists of promoter, intron, 
start codon, exon and stop codon. Identification of the 
coding region is done by the presence of exon and that of 
non-coding region by the presence of intron. The size of 
intron sequences is in the range of 80-10000 nucleotides or 
more. In protein synthesis, introns are removed from the 
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sequence during the process of transcription and translation. 
In all known intron sequences, the consensus sequences at 
both ends of an intron are almost the same. From DNA, pre-
mRNA is produced through transcription process, which 
contains all the necessary information of the gene sequence, 
but only before it is fully converted (or processed) into 
mRNA. In the process called splicing, introns are removed 
and exons are retained in the mRNA and the reactions in 
splicing process are catalyzed by spliceosome. Within the 
intron, an acceptor site (3' end of the intron) and a donor site 
(5' end of the intron) are essential for splicing. The splice 
donor site includes invariant sequence GT at the 5' end of the 
intron with a larger and less preserved region. The splice 
acceptor site at the 3’ end of the intron terminates the intron 
with nearly invariant AG sequence (Fig. 1). This is known as 
GT–AG law [3]. 
 Dissimilar modification of a protein can arise when 
single exon is bounced or if only one out of two splice sites 
is used from an exon. This is called alternative splicing [4]. 
Essential mechanism for splice site selection in alternative 
splicing is the changeability in signal strength [2]. 
 Identifying the presence of splice site within DNA 
sequence is the initial step in the accurate prediction of gene 
structure. Biology researchers have extensively studied the 
laboratory procedures such as PCR on cDNA libraries, 
northern blot, sequencing, etc. for accurately identifying the 
gene structure; but, due to presence of large number of 
hidden genes, it is almost impossible to describe all of them 
by using laboratory experiments only. Therefore, lab 
experiments are combined with bioinformatics approaches in 
the modern researches [5-9]. Numerous bioinformatics and 
computational approaches have been applied for gene 
prediction with the help of gene splicing. Some of the 
examples include probabilistic approaches, support vector 
machine and neural network approaches, discriminant 
analysis and the information theoretic approaches. 
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 Splice site identification on the basis of models of site 
recognition and sequence data (supported by experimental 
confirmations) are described in a multi-agent system namely 
AMELIE [10]. This system, and the NetPlantGene are the 
two independent systems devoted to the recognition of splice 
sites in plant and human genomes respectively [11]. The 
HMM system, proposed by Salzberg et al. [12] is used to 
predict translation start site and splice site in the eukaryotic 
genes. They also developed Viterbi exon-intron locator 
(VAIL) [13], which is also an HMM based eukaryotic gene 
predictor tool. An effective HMM has been developed by 
Michael et al. [14], which is capable of signifying the 
consensus and degeneracy features of splicing sites in 
eukaryotic genes, and is utterly trained by using expectation 
maximization (EM) algorithm. A 12-fold cross-validation 
method was also used on this system to calculate its 
performance. The Feature Subset Selection (FSS), developed 
by using Estimation of Distribution Algorithm (EDA) is also 
reported [15], which have shown superior performance in 
classification of splice sites in case of Arabidopsis thaliana 
[16]. An FSS, based on wrapper algorithm and united with 
SVM [17] has also been used for splice site prediction. 
Another newer technique, EDA based feature ranking, was 
used for splice site identification in rapid feature selection 
process [18]. The SVM was also used by Brown et al. [19] to 
calculate a useful function for microarray gene expression by 
classifying genes and the existing data sets. To trace the 
signals in ribosome binding sites, splice site and promoter 
section, one computational technique was developed by 
Rodger Staden [20]. This method allocates separate values to 
all the bases at every position of the identification sequence 
to specify the comparative significance of each base, which 
is performed by weight matrix models (WMM). Zhang and 
Marr [21] introduced WAM that oversimplified the 
conventional WMM and integrated the dependencies 
between contiguous locations. Splice site can be identified 
by applying four stochastic regular grammar (SRG) 
inference algorithms controlled by generalization parameters 
with 10-way cross-validation to choose the best grammar for 
each algorithm [22]. To identify Translational Start Sites 
(TSS) and splice sites junction in eukaryotic mRNA, 
Salzberg [12] established conditional probability (CP) 
matrices. Gene finding model GENSCAN was introduced by 
Burge and Karlin [23, 24], tested on human and vertebrate 
genes. It has the blend of the double-stranded nature of the 
model and the ability to deal with inconsistent numbers of 
genes, and is particularly useful for studying long human 
genomic sequences. The maximal dependence 

decomposition (MDD) was also developed by them for 
modeling useful signals in DNA sequence and recommended 
that there were strong relationship between some of two or 
three precise positions with base constraints and probably 
relate to the splice site recognition. To identify transcription 
factor binding sites (TFBS) and splice sites, Huang and Zhao 
[25] applied permuted variable length Markov models 
(PVLMM) that can confine the potentially important 
dependencies with locations. For the prediction of splice site 
region in human pre-mRNA an artificial neural networks 
(ANN) was also applied [26]. A time-delay neural network 
model, which is a type of feed-forward neural network, 
shown their application to promoter annotation in the 
Drosophila melanogaster genome, and name of the tool was 
neural network for promoter prediction (NNPP) [27]. 
 Some of the reasons for utilizing SVMs in 
Bioinformatics are – these have a strong widespread 
application in machine learning for classification and, these 
can target the relevant data positions automatically [28]. 
Other applications of SVM in bioinformatics are – prediction 
of protein secondary structure, multi-class protein fold 
recognition, and the prediction of human signal peptide 
cleavage sites. Till date, the most popular method for splice 
site recognition are Markov models which need the labor-
intensive selection of information resource – SVM, the 
support vector machine kernels [12, 29-38]. 
 As already mentioned, a large improvement in the 
recognition of splice sites is possible if a basic model uses 
hybrid architecture, e.g. WMM, MM1, MDD etc., is 
combined with other signal methods. GeneSplicer [35] is 
such type of method, where second order Markov models 
(MM2) are united with MDD. Probabilistic parameters of 
first order MM are joined with support vector machine 
(SVM) to predict splice site [39]. The addition of RNA 
structure information increases the accuracy of eukaryotic 
splice site finding, as examined by Markov models of zero to 
second orders [40]. Rajapakse and Ho et al. [41] merged a 
typical MM2 and back propagation neural networks (BPNN) 
to establish another splice site predictor. 
 Here, in our proposed method, MM2 is combined with 
SVM for the objective of increasing the efficiency and 
accuracy of splice-site prediction. The model consists of 
three stages – initial stage, in which a second order Markov 
Model (MM2) is used, i.e. feature extraction; intermediate, 
or the second stage in which principal feature analysis (PFA) 
is done, i.e. feature selection; and the final or the third stage, 

 

 

 

 

 

 

 

 
 
Fig. (1). Acceptor and donor splice sites in DNA sequence. 
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in which a support vector machine (SVM) with Gaussian 
kernel is used for final classification. By comparing this 
proposed MM2F-SVM model with the other existing splice 
site prediction programs, it was found that the model give 
superior performance than the other programs. 

2. MATERIALS AND METHODOLOGY 

2.1. Evaluation Datasets 

 Three ‘standard’ datasets of splice site were used to 
evaluate the performance of the proposed algorithms, which 
are publicly available, and are described in detail below. 
 HS3D (Homo Sapiens Splice Sites data set) was our first 
dataset [42], which is a dataset of intron, exons and splice 
sites. This dataset (of Human genes only) was extracted from 
Genbank. The length of each splice site sequence was 140bp. 
There were 2796 true donor sites and 271937 pseudo donor 
sites which contained “GT” dinucleotides and there were 
2880 true acceptor and 329374 pseudo acceptor sites which 
contained “AG” dinucleotides. In case of donor splice site, 
GT dinucleotide was conserved at positions -71 and -72 of 
the sequences, and for acceptor splice site, AG was 
conserved at positions -69 and -70 of the sequences. The 
ratio between the number of true splice site and pseudo 
splice site was 1:10 and we used this dataset to extract 
features for modeling further. 
 The second dataset, DGSplicer [34], which is a true 
dataset, was created by extracting 2381 real acceptor sites 
and 2381 real donor sites from 462 annotated multiple-exon 
human genes [43]. Two donor splice sites and one acceptor 
splice site were excluded from the collection to form a set of 
2380 real acceptor sites and 2379 real donor sites because 
those three splice sites contained the symbols other than A, 
C, G, and T. From 462 annotated human genes, a large 
collection of 400314 pseudo acceptor sites and 283062 
pseudo donor sites were collected and used as the false 
dataset. The window size for the donor splice site was 18 
nucleotides {-9 to +9} with consensus GT at positions +1 
and +2, which included the last 9 bases of the exon and first 
9 bases of the succeeding intron. The acceptor splice sites 
have a window of 36 nucleotides {-27 to +9} with consensus 
AG at positions -26 and -27, which includes the last 27 
nucleotides of the intron and first 9 nucleotides of the 
succeeding exon. 
 In order to verify the effectiveness of our method, we 
performed additional evaluation on the third dataset namely 
NN269 [44]. It consisted of 1324 confirmed true acceptor 
sites, 1324 confirmed true donor sites, 5552 pseudo acceptor 
sites and 4922 pseudo donor sites; collected from 269 human 
genes. The window size of donor splice sites was 15 
nucleotides {-7 to +8} with consensus GT at positions +1 
and +2. This includes the last 9 bases of the exon and first 6 
bases of the succeeding intron. The acceptor splice site have 
a window size of 90 nucleotides {-70 to +20} with 
consensus AG at positions -69 and -70. This includes the last 
70 nucleotides of the intron and first 20 nucleotides of the 
succeeding exon, which is available at [45]. This data set 
was split into a training set and a testing set. The training 
dataset contained 1116 true acceptor, 1116 true donor, 4672 
pseudo acceptor, and 4140 pseudo donor sites. The test data 

set contained 208 true acceptor sites, 208 true donor sites, 
881 false acceptor sites, and 782 false donor sites. In NN269 
donor splice sites, GT was conserved in positions -8 and -9 
of the sequences and for acceptor dataset; AG was conserved 
in positions -69 and -70 of the sequences. 

2.2. Overview of the Projected Model 

 The proposed model MM2F-SVM includes a number of 
separate modules and sub modules that were anticipated to 
capture properties of DNA and specially designed to identify 
splice site. As splice site corresponds to the donor splice site 
and acceptor splice site, so splice site categorization process 
is subdivided into two classification modules – donor splice 
site classification and acceptor splice site classification 
process. Further, for the recognition of acceptor splice sites 
and donor splice sites, two different models are assembled 
which consist of three phases (or sub modules). The model 
employs several important aspects; these are (1) appropriate 
features encoding scheme, (2) feature selection or ranking 
method, and (3) parameters optimization. The basic 
subsequent processing steps are outlined in the following: 
1. Feature extraction: Positional probabilistic 

descriptions of different orders are constructed and a 
pool of candidate features is generated. 

2. Feature selection: The discriminative power of each 
feature is assessed and the most informative features 
are selected using PFA. 

3. Classification step: The SVM classifier is trained on 
the probabilistic parameters. 

 The proposed model architecture is described in Fig. (2). 

2.3. Feature Extraction 

 In Markov process, the probability of the given condition 
in the given instant is likely to be presumed from 
information about the previous conditions [46]. A Markov 
chain represents a statistical system that undergoes 
transitions from one state to another between a limited or 
unlimited number of possible states and indicates next state 
depends only on the present state. A simple and existing 
Markov Model for DNA sequence is shown in Fig. (3). The 
systems which follow this specific type of characteristic are 
called Markov property, and the behavior of Markov chains 
are described by transition probability matrix. Every element 
of the matrix signifies probability of passage from a specific 
condition to a next state. In Markov model, we require a 
learning set of sequences on which these probabilities will be 
predictable. By using this technique, we can simply calculate 
the likelihood of the sequence, i.e. the probability that the 
sequence has been produced in accordance with this model. 

 In a DNA sequence, every nucleotide corresponds to a 
state in the Markov chain, where the observed state variables 
are derived from the symbol XDNA = {A,T ,G,C} . If length of 
the MM is L , then this probabilistic model describes the 
probability distribution of sequences of states S1,S2 ...,SL  
through transition probabilities, where transition probability 
P(SI = q | SI−1 = p)  describes the probability of state SI = q  
(given, state SI−1 = p ). A Markov model is used to capture 
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the inter-dependencies among successive states in order to 
extract a set of probabilistic features [47]. If K is the order of 
MM, then likelihood of a sequence in this model is shown 
below: 

P(S1,S2 ,...,SL ) = PI
I=1

L

∏ (SI | SI−1 )  (1) 

 

 

 

 

 

 

 
Fig. (3). Markov model for DNA sequence. 

 The ensuing model allocates different transition 
probabilities for each position. In the proposed method, 
MM2F-SVM employs 2nd order Markov model (MM2) to 
build the probabilistic feature set, which has transition 
probabilities of the format P(SI = q | SI−1 = p,SI−2 = v) , and 
can be described by the collection of parameters: 

P(SI | SI−1,SI−2 ) :SI ,SI−1,SI−2 ∈XDNA , I = 1,2,.., L{ }  (2) 

2.4. Feature Selection 

 The feature selection areas includes text processing of 
internet documents, gene expression array analysis, and 
combinatorial chemistry to improve prediction performance 
providing faster and more cost-effective predictors and better 
understanding of the underlying process that generated the 
data. For pattern classification, feature selection plays a very 
crucial role in the preprocessing step, which aims to deal 
with the storage space, dimensionality reduction problem 

and classification time, to improve the understanding of the 
problem as well as result interpretation [48, 49]. 
 Feature selection process is useful to provide the 
necessary mechanism that clean out redundant features and 
provide some biological interpretation of the incorporated 
features. In this framework, feature selection in biological 
data can be employed in two different ways: 
• By using Positional Feature Selection (PFS) [50] 

technique that identifies the best-fitting dependency 
length based on the discriminative power of each 
feature. 

• Reducing feature set by selecting a subset of the 
original features that contains most of the essential 
information, using the same criteria as the PCA, the 
method name is principal feature analysis (PFA) [51]. 

 Positional Feature Selection (PFS): PFS recognizes the 
best-fitting dependency length by distinguishing each 
feature. It selects the optimal feature among those describing 
a specific position by comparing their discriminative power; 
from a set of positional models of different lengths. It is 
applicable to solve binary classification problems [50]. The 
central model uses the F-score value as a selection criterion 
for the best-suitable feature per splice site [52]. 

 Principal Feature Analysis (PFA): It is very much 
similar with the methods such as principal component 
analysis (PCA). One variant is possible by choosing a subset 
of the original feature vector that retains the underlying 
discriminative information by using the same optimality 
criteria as in PCA. Instead of identifying a projection of all 
features included to the original feature space to a lower 
dimensional space, PFA utilize the properties of the primary 
components to select a subset of the original features [51]. 
PFA considers the mutual information among the selected 
features. In this case, the source features are the second-order 
MMs and the outcome is the principal feature subset that 
competently characterizes the initial group of probabilistic 
parameters. The extracted components are separately studied 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). The MM2F-SVM Model. The input DNA sequence is preprocessed by 2nd order MM, PFA based feature selection. An SVM with 
Gaussian kernel function takes these parameters as its input for the splice site prediction. 
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for their statistical importance by performing the Wilcoxon 
rank sum test ( p < 0.05 ). 

 In our proposed model we have selected Principal 
Feature Analysis (PFA) for feature selection process due to 
its better sensitivity as compared to Positional Feature 
Selection (PFS). 

2.5. Classification 

 The fundamentals of Support Vector Machines (SVM) 
were studied extensively by Vapnik [53-56]. The 
formulation of SVM uses the Structural Risk Minimization 
(SRM) principle [57], which is more superior to the 
conventional Empirical Risk Minimization (ERM) principle 
used with usual neural networks. An SVM builds one or 
multiple hyperplane in a high dimensional space. Better 
partition can be accomplished by using the hyperplane that 
has the largest distance to the nearest training data point of 
any class (functional margin). The basic rule in SVM 
classifier is that the generalization error gets reduced when 
the margin is high [55, 58, 59]. Fig. (4) shows the SVM with 
hyperplane and margin. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Support Vector Machine (SVM) with hyperplane and 
margin. 

 SVM uses hypothetical space of linear function in high 
dimensional feature space trained with a learning algorithm. 
Using the method of Lagrange multipliers, we can obtain the 
dual formulation, which is expressed in terms of 
variablesα i . To solve the optimization problem, SVM 
classification is given by: 

Maximize f (α ) = α I −
1
2I=1

N∑ J=1

N∑ α Iα JYIYJ K(XI , XJ ),
I=1

N∑  (3) 

Subject to α IYJI=1

N∑ = 0 , 0 ≤α I ≤ C , I = 1,...N  

 In the above equation N is the number of training data, 
X  is input vectors, Y defines class value that can be either -
1 or 1 and C is trade off parameter for generalization 
performance. The dual formulation leads to an expansion of 
the weight vector in terms of the input examples: 

w = YIα I XII=1

N∑  (4) 

 Different data points of XI for which α I > 0  are those 
points that are on the margin or within the margin when a 
soft-margin SVM is used. These are the so-called support 
vectors. 
 Assuming a query DNA segment is D, the trained SVM 
classifies based on the decision function: 

o(D) = sign α I yI K(XI , D)
I=T
∑⎡
⎣
⎢

⎤
⎦
⎥  (5) 

where set of support vectors are represented by T. 

 For classification purpose we have used Gaussian RBF 
kernel with widthσ = 1 , whereσ  controls the flexibility of 
the resulting classifier. Therefore equation becomes: 

Kσ
GaussianRBF (X, D) = exp(− 1

σ
|| X − D ||2 )  (6) 

 After expanding, this equation becomes 

Kσ
GaussianRBF (X, D) = exp(− 1

σ
XI − DI( )2

I=1

N

∑⎡
⎣
⎢

⎤
⎦
⎥  (7) 

where N is the number of dimensions in vectors X and D , 
correspondingly Ith element in vectors X  and D  are XI  and 
DI . After substituting equation (7) into equation (5), the 
output O(D) becomes Gaussian kernel with width σ = 2 , 

 While D is a vector of conditional probabilities of a 
sequence of length L: 

D = P(S2 | S1 ),P(S3 | S2 ),P(S4 | S3 ),...,P(SL | SL−1 )[ ]  (8) 

 Therefore a SVM classifier with the Gaussian kernel 
function can approximate higher order Markov model. 

2.6. Model Design 

 The splice site identification process is divided into two 
sub modules; these are donor splice site identification and 
the acceptor splice site identification. For each module, 
separate models are created, e.g., for HS3D donor data-set, 
one MM2F-SVM model is created and trained with HS3D 
donor training dataset. To estimate the classification 
performance of this model, the HS3D donor test dataset is 
used. Likewise, a separate MM2F-SVM model is trained and 
tested with HS3D acceptor training and acceptor test dataset. 
Similarly, DGSplice and NN269, donor and acceptor 
dataset’s are trained and tested. 

2.7. Model Learning 

 Training of the proposed model was conducted in three 
stages: the MM2 parameters estimation, feature selection 
using PFA and the SVM with Gaussian kernel training 
having width of 20 (for classification). True and false splice 
site training sequences are used to create the second order 
markov model. Depending upon the true and false splice site 
class label, the desired output level was set to +1 and -1. We 
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used MATLAB [60] for implementation of the support 
vector machine. 

2.8. Model Comparison 

 To validate the usefulness of our proposed MM2F-SVM 
method and to compare its performance with others, we have 
selected other accepted methods those are closely related to 
the proposed method. We used another preprocessing 
scheme that is zero order markov model (MM0) with SVM 
and compare their preprocessing performance with our 
proposed model. 

2.9. Performance Measures 

 The proposed hybrid method’s classification performance is 
estimated on the ROC curves, which gives a measure of the 
tradeoff between the true positive rate TPR and false positive 
rate FPR. Sensitivity, Sn  is the percentage of correct prediction 
of true splice sites and specificity, Sp  is the percentage of 
correct prediction of pseudo splice sites. SN  (or TPR) is the 
percentage of correct prediction of true sites and SP  is the 
percentage of correct prediction of false sites as defined below: 

Sensitivity(SN ) = TP
TP + FN

 (9) 

Specificity(SP ) = TN
TN + FP

 (10) 

FPR = 1− Sp = FP
FP + TN

 (11) 

precision = TP
TP + FP

 (12) 

 A true positive is a true donor (true acceptor, 
respectively) site that is also classified as a true donor (true 
acceptor, respectively) site. A false positive is a false donor 
(false acceptor, respectively) site that is wrongly predicted as 
a true donor (true acceptor, respectively) site. A true negative 
is a false donor (false acceptor, respectively) site that is also 
classified as a false donor (false acceptor, respectively) site. 
A false negative is a true donor (true acceptor, respectively) 
site that is wrongly classified as a false donor (false acceptor, 
respectively) site given in Table 1. 
Table 1. Definitions of TP, TN, FP and FN 
 

 Predicted Positive Predicted Negative 

True positive True positives, TP False negatives, FN 

True negative False positives, FP True negatives, TN 

 
 Accuracy ( ACC ) is the proportion of the candidate sites 
in the test data set that are classified correctly [61], which 
tells how well the proposed MM2F-SVM system can assign 
true sites and false sites into the right categories; it was 
calculated by the following formula: 

ACC = TN + TP
TN + TP + FN + FP

 (13) 

 Matthews’s correlation coefficient (MCC) is used as a 
comprehensive classification performance metric 
incorporating both sensitivity and specificity measures 
defined by the following formula [61]. 

MCC = TP ×TN − FP × FN
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

 

where MCC ranges from -1 to 1, and completely well trained 
classifiers are denoted by 1. 
 

 
 
 
 

 
 

 

 
 

 
 
 

Fig. (5). ROC curve showing the comparison of performance 
between MM0-SVM and MM2F-SVM using HS3D donor dataset. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). ROC curve showing the comparison of performance between 
MM0-SVM and MM2F-SVM using HS3D acceptor dataset. 

2.10. ROC Analysis 

 Receiver operator curve (ROC) analysis is an effective 
and widely used method of assessing the performance of 
models [62]. It is a graphical representation of sensitivity and 
specificity of a classification model. To approximate the best 
possible FPR and TPR pair, we used the Euclidean metric. 
Specially, the best sensitivity, specificity tradeoff is defined 
by the coordinates of each point on the ROC curve with the 
minimum distance from a perfectly well-trained classifier. 
When the ROC is created from the TPR (on the y-axis) and 
FPR (on the x-axis) of the model, the closer a curve 
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approaches the (0,0) point, the more accurate the model is 
(refer to Figs. 5-12). 

2.11. Cross Validation 

 A twelve fold cross validation (CV) technique is applied 
to identify the MM2F-SVM splice site prediction accuracy 
and to compare their performance with the other available 
methods [63]. Here cross validation is performed by splitting 
the data into twelve independent subsets, in which every 
subset does not share any repeating sequences. Each model 
was trained by selecting eleven of the subsets (training data) 
and tested on twelfth unused subset (test data). We 
calculated the average of twelve prediction accuracies as the 
final prediction performance of the model, because CV is 
used for estimating the efficiency of the model. 

3. RESULTS AND DISCUSSION 

3.1. Selection of the Best Preprocessing Method 

 For preprocessing method selection, we have used 
methods like MM0 and MM2F with SVM classifiers for 
splice site prediction. We took HS3D donor and acceptor 
dataset for predictive accuracy comparison of MM0-SVM 
and MM2F-SVM methods. The ROC analysis of the models 
MM0-SVM and MM2F-SVM are shown in Figs. (5, 6) 
respectively. After observing their performance, the MM2F-
SVM model was used primarily for splice site identification. 

3.2. Comparison in the Predictive Performance 

 The proposed model’s 12-fold cross validation results - 
sensitivity ( Sn ), specificity ( Sp ), FPR and MCC for donor 
MM2F-SVM and the acceptor MM2F-SVM using HS3D are 
shown in Tables 2 and 3 respectively. 

Table 2. Performance of Donor MM2F-SVM with Gaussian Kernel Width 20 for Identifying Donor (5’ Splice) Sites 
 

S. No. No of True Donor No of Pseudo Donor TP FP TN FN Sensitivity (Sn) Specificity (Sp) FPR MCC 

1 233 22670 224 480 22190 9 0.96137 0.97882 0.0211 0.5466 

2 235 22700 227 490 22210 8 0.96595 0.97841 0.0215 0.5464 

3 240 23001 232 501 22500 8 0.96666 0.97821 0.0217 0.5465 

4 235 22800 228 515 22285 7 0.97021 0.97741 0.0225 0.5389 

5 241 22850 233 532 22318 8 0.96680 0.97671 0.0232 0.5357 

6 238 23004 230 553 22451 8 0.96638 0.97596 0.0240 0.5258 

7 237 22760 232 567 22193 5 0.97890 0.97508 0.0249 0.5261 

8 236 22850 231 589 22261 5 0.97881 0.97422 0.0257 0.5179 

9 238 23577 233 613 22964 5 0.97899 0.97400 0.026 0.5121 

10 235 22890 230 674 22216 5 0.97872 0.97055 0.0294 0.4912 

11 238 22779 234 691 22088 4 0.98319 0.96966 0.0303 0.4907 

12 237 22547 233 720 21827 4 0.98312 0.96806 0.0319 0.4820 

 Average 0.97326 0.97476 0.0252 0.5217 

 
Table 3. Performance of Acceptor MM2F-SVM with Gaussian Kernel Width 20 for Identifying Acceptor (3’ Splice) Sites 
 

S. No. No of True Acceptor No of Pseudo Acceptor TP FP TN FN Sensitivity (Sn) Specificity (Sp) FPR MCC 

1 240 27500 229 1005 26495 11 0.95416 0.96345 0.0365 0.4121 

2 245 27820 234 1259 26561 11 0.95510 0.95474 0.0452 0.3771 

3 239 27450 229 1308 26142 10 0.95815 0.95234 0.0476 0.3678 

4 250 28000 240 1392 26608 10 0.96 0.95028 0.0497 0.3654 

5 239 27780 230 1399 26381 9 0.96234 0.94964 0.0503 0.3584 

6 256 28300 247 1487 26813 9 0.9648 0.9474 0.0525 0.3600 

7 248 28670 240 1698 26972 8 0.96774 0.94077 0.0592 0.3350 

8 253 27600 245 1729 25871 8 0.96837 0.93735 0.0626 0.3348 

9 244 27676 237 1745 25931 7 0.97131 0.93694 0.0630 0.3291 

10 254 27855 247 1759 26096 7 0.97244 0.93685 0.0631 0.3342 

11 249 27650 243 1789 25861 6 0.97590 0.93529 0.0647 0.3297 

12 241 27554 236 1861 25693 5 0.97925 0.93245 0.0675 0.3200 

  Average 0.96580 0.9448 0.0551 0.3520 
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Fig. (7). ROC curve showing the comparison of performance 
between NNSplice, NetGene2 and MM2F-SVM using HS3D donor 
dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (8). ROC curve showing the comparison of performance 
between NNSplice, NetGene2 and MM2F-SVM using HS3D 
acceptor dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). ROC curve showing the comparison of performance 
between MDD and MM2F-SVM using DGSplicer donor dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). ROC curve showing the comparison of performance 
between MDD and MM2F-SVM using DGSplicer acceptor dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). ROC curve showing the comparison of performance 
between SVM+B and MM2F-SVM using NN269 donor dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). ROC curve showing the comparison of performance 
between SVM+B and MM2F-SVM using NN269 acceptor dataset. 
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 The comparison of performance between the MM2F-
SVM, NNSplice [44] web site (http://www.frutfly.org/se 
q_tools/splice.html) and NetGene2 which was trained on 
human data (http://genome.cbs.dtu.dk/services/NetGene2/) 
using HS3D dataset is also done. The standard TPR ( Sn ) and 
FPR(1- Sp ) are employed for this comparison, and the 
observation is that the MM2F-SVM is the superior model for 
prediction of donor and acceptor splice site. NetGene2 
produced the second best performance as shown in Figs (7, 
8). The maximum Sn  and Sp  values for MM2F-SVM are 
98.31% and 97.88% for the donor splice site prediction and 
97.92% and 96.34% for acceptor splice site prediction. 
 To verify the prediction accuracies of the MM2F-SVM 
method, we used DGSplicer dataset and compared the 
performance with MDD method [23]. Here, MM2F-SVM 
showed superior performance as shown in Figs. (9, 10). 
 To further verify the prediction accuracies of the MM2F-
SVM method, we used NN269 dataset and compared the 
performance with SVM+B method [64], and observed that 
MM2F-SVM gives superior performance, as shown in Figs. 
(11, 12). 

4. CONCLUSIONS 

 In this paper, we have proposed a hybrid MM2F-SVM 
system which is able to choose a specific subset of features 
to identify a splice site junction according to the ratio of 
probabilities at every location. We have also used 12-fold 
cross validation experiment to verify the results. This system 
is able to correctly identify maximum 98.31% of the true 
donor sites and 97.88% of the false donor sites; and 97.92% 
of the true acceptor sites and 96.34% of the false acceptor 
sites in the test data set. In addition, this method is simpler, 
more effective and can be used to identify splice site junction 
on large scale in sequenced genomics. 
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