
Selection of Best Sorting Algorithm for a Particular 

Problem 
 

Thesis submitted in partial fulfillment of the requirements for the award of  

degree of 

 

Master of Engineering 

in 

       Computer Science & Engineering 

 

 

By 

Aditya Dev Mishra 

   (80732001) 

 

 Under the supervision of 

Dr. Deepak Garg 

Asst. Professor 

CSED 

 
 

 

                 COMPUTER SCIENCE AND ENGINEERING DEPARTMENT 

      THAPAR UNIVERSITY 

      PATIALA – 147004 

 

     JUNE 2009 



 



i 
 



ii 
 



iii 
 

        

                      ABSTRACT 

  

 Sorting is the fundamental operation in computer science. Sorting refers to the 

operation of arranging data in some given order such as increasing or decreasing, with 

numerical data, or alphabetically, with character data. 

There are many sorting algorithms. All sorting algorithms are problem specific. The 

particular Algorithm one chooses depends on the properties of the data and operations 

one may perform on data. Accordingly, we will want to know the complexity of each 

algorithm; that is, to know the running time f (n) of each algorithm as a function of 

the number n of input elements and to analyses the space requirements of our 

algorithms. Selection of best sorting algorithm for a particular problem depends upon 

problem definition. Comparisons of sorting algorithms are based on different 

scenario. We are comparing sorting algorithm according to their complexity, method 

used like comparison-based or non-comparison based, internal sorting or external 

sorting and also describe the advantages and disadvantages. One can only predict a 

suitable sorting algorithm after analyses the particular problem i.e. the problem is of 

which type (small number, large number, repeated value). 

 

 

 

 

 

 

 

 

 



iv 
 

 

                                                            TABLE OF CONTENTS 

  

CERTIFICATE............................................................................................................ i                

ACKNOWLEDGEMENT.......................................................................................... ii                                                        

ABSTRACT...............................................................................................................  iii                     

TABLE OF CONTENTS........................................................................................... iv 

LIST OF FIGURES...................................................................................................vii 

LIST OF TABLES....................................................................................................viii 

1. INTRODUCTION....................................................................................................1                           

        1.1 Introduction......................................................................................................1  

        1.2 Sorting..............................................................................................................3 

        1.3 Classification of Sorting Algorithms...............................................................3 

        1.4 Method of sorting.............................................................................................5 

        1.5 Why Sorting.....................................................................................................6 

        1.6 Organization of Thesis.....................................................................................7 

2. SOME FUNDAMENTAL SORTING ALGORITHMS......................................8    

        2.1 Insertion Sort....................................................................................................8                                                                                        

        2.2 Bubble Sort.......................................................................................................9                                                                                                        

        2.3 Selection Sort.................................................................................................10                                                                          

        2.4 Bucket Sort.................................................................... ................................11                                                          

        2.5 Quick Sort......................................................................................................12                                                                                            

        2.6 Radix Sort......................................................................................................14                                                              

        2.7 Counting Sort.................................................................................................16                                                                                              

3. SOME ADVANCED SORTING ALGOITHMS................................................18                                                                                                          

       3.1 Proxmap Sort..................................................................................................18                                                                                                   

       3.2 Merge Sort......................................................................................................19                                                                                           



v 
 

       3.3 Shell Sort........................................................................................................20                                                                        

       3.4 Library Sort....................................................................................................20 

       3.5 Heap Sort........................................................................................................21 

       3.6 Gnome Sort.....................................................................................................23     

       3.7 Stack Sort........................................................................................................23 

              3.7.1 The distribution phase of Stack Sort.....................................................24 

              3.7.2 The collection phase of Stack Sort........................................................25 

       3.8 Deqsort............................................................................................................26 

              3.8.1 The distribution phase of DeqSort........................................................26 

              3.8.2 The collection phase of DeqSort...........................................................27 

       3.9 Minimax Sort...................................................................................................28 

             3.9.1 The distribution phase of MinMax Sort.................................................29 

             3.9.2 The collection phase of MinMax Sort....................................................29 

       3.10 A New Sorting Algorithm.............................................................................30 

4. SORTING NETWORK     

       4.1 Bitonic Sort.....................................................................................................32 

       4.2 Odd-Even Sorting Network............................................................................34 

5. PROBLEM STATEMENT...................................................................................35  

        5.1 Problem Statement.........................................................................................35   

        5.2 Justification....................................................................................................35 

        5.3 Explanation....................................................................................................36                                                                                                     

6. RESULTS & DISCUSSION.................................................................................37  

        6.1 Problem Definition and Sorting Algorithms..................................................37  

        6.2 Strength and Weakness..................................................................................38 

        6.3 Comparison of Various Sorting Algorithms..................................................39 

              6.3.1 Comparison of Comparison Based Sorting Algorithms.......................40 

              6.3.2 Comparison of Non Comparison Based Sorting Algorithms...............41                                                                                                      



vi 
 

 

7. CONCLUSION......................................................................................................43          

ANNEXURES                                                                                                                  

        I. References........................................................................................................46                                                                                                                           

      II. List of publications............................................................................................49                                                                                                                 

                                                                  

                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

                                                                     LIST OF FIGURES 

 

Figure 2.1: Example of Insertion Sort............................................ ..............................8                                                  

Figure 2.2: Example of Selection Sort.........................................................................10                                                                                                    

Figure 2.3: Example of Bucket Sort............................................................................ 11 

Figure 2.4: Example of Quick Sort..............................................................................13  

Figure 2.5 Example of Radix Sort................................................................................15 

Figure 2.6 Example of Counting Sort..........................................................................16 

Figure 3.1: Example of Proxmap Sort......................................................................... 18                                         

Figure 3.2: Example of Merge Sort..............................................................................19                                                                                      

Figure 3.3: Example of Shell Sort................................................................................20                                                                                  

Figure 3.4: Example of Heap Sort................................................................................22                                                                  

Figure 4.1: Example of Biotonic Sort..........................................................................32                                                                                                                   

 

 

 

 

 

  

 

                                                                        

          

 

 

 

 



viii 
 

 

 

                                                                  LIST OF TABLES 

 

 

Table 6.1 Problem Definition and Sorting Algorithm................................................37 

Table 6.2 Strength and Weakness..............................................................................39 

Table 6.3 Comparison of comparison based sorting algorithms................................40 

Table 6.4 Comparison of non-comparison based sorting algorithms.........................41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

 



1 
 

                                                                                     CHAPTER 1  

 INTRODUCTION 

                                        

1.1  Introduction 

There are many fundamental and advance sorting algorithms. All sorting algorithm are 

problem specific means they work well on some specific problem and do not work well 

for all the problems. All sorting algorithm apply to specific kind of problems. Some 

sorting algorithm apply to small number of elements, some sorting algorithm suitable for 

floating point numbers, some are fit for specific range ,some sorting algorithms are used 

for large number of data, some are used if the list has repeated values. We sort data either 

in numerical order or lexicographical, sorting numerical value either in increasing order 

or decreasing order and alphabetical value like addressee key. 

One of the fundamental problems of computer science is ordering a list of items. There is 

a plethora of solutions to this problem, known as sorting algorithms. Some sorting 

algorithms are simple and intuitive, such as the bubble sort. Others, such as the quick sort 

are extremely complicated, but produce lightning-fast results. The common sorting 

algorithms can be divided into two classes by the complexity of their algorithms. There is 

a direct correlation between the complexity of an algorithm and its relative efficiency. 

Algorithmic complexity is generally written in a form known as Big-O notation, where 

the O represents the complexity of the algorithm and a value n represents the size of the 

set the algorithm is run against. The two classes of sorting algorithms are O(n
2
), which 

includes the bubble, insertion, selection, and shell, sorts; and O(n log n) which includes 

the heap, merge, and quick sort. 

Since the dawn of computing, the sorting problem has attracted a great deal of research, 

perhaps due to the complexity of solving it efficiently despite its simple, familiar 

statement. It is not always possible to say that one sorting algorithm is better than another 

sorting algorithm. Performance of various sorting algorithm depend upon the data being 

sorted. Sorting is used in many important applications such that there has been an 

abundance of performance analysis. However, most previous research is based on the 



2 
 

algorithm‟s theoretical complexity or their non-cached architecture. As most computers 

today contain cache, it is important to analyze them based on their cache performance. 

Quick sort was determined to be a good sorting algorithm in terms of average theoretical 

complexity and cache performance. 

Sorting is one of the most important and well-studied problems in computer science. 

Many good algorithms are known which offer various trade-offs in efficiency, simplicity, 

memory use, and other factors. However, these algorithms do not take into account 

features of modern computer architectures that significantly influence performance. A 

large number of sorting algorithms have been proposed and their asymptotic complexity, 

in terms of the number of comparisons or number of iterations, has been carefully 

analyzed [1]. In the recent past, there has been a growing interest on improvements to 

sorting algorithms that do not affect their asymptotic complexity but nevertheless 

improve performance by enhancing data locality [3, 6, 21]. 

Sorting is a fundamental task that is performed by most computers. It is used frequently 

in a large variety of important applications. Database applications used by schools, banks, 

and other institutions all contain sorting code. Because of the importance of sorting in 

these applications, dozens of sorting algorithms have been developed over the decades 

with varying complexity. Slow sorting methods such as bubble sort, insertion sort, and 

selection sort have a theoretical complexity of O (n
2
). Even though these algorithms are 

very slow for sorting large arrays, the algorithm is simple, so they are not useless. If an 

application only needs to sort small arrays, then it is satisfactory to use one of the simple 

slow sorting algorithms as opposed to a faster, but more complicated sorting algorithm. 

For these applications, the increase in coding time and probability of coding mistake in 

using the faster sorting algorithm is not worth the speedup in execution time. Of course, 

if an application needs a faster sorting algorithm, there are certainly many ones available, 

including quick sort, merge sort, and heap sort. These algorithms have a theoretical 

complexity of O (n log n). They are much faster than the O (n
2
) algorithms and can sort 

large arrays in a reasonable amount of time. However, the cost of these fast sorting 

methods is that the algorithm is much more complex and is harder to correctly code. But 



3 
 

the result of the more complex algorithm is an efficient sorting method capable of being 

used to sort very large arrays. 

1.2 Sorting  

One of the most common applications in computer science is sorting, through which data 

are arranged according to their values.    

Let A be a list of n elements A1,A2……………AN  in memory. Sorting of A means the 

operation of rearranging the contents of A so that they are increasing in order 

(numerically or lexicographically), so that 

                                       A1 <=A 2< =A3 < = A4…………<=AN. 

Since A has n elements, there are n! Ways that the contents can appear in A. these ways 

correspond to the n! Permutation of 1, 2, 3……..n. accordingly, each sorting algorithm 

must take care of these n! Possibilities.  

 

1.3 Classification of Sorting Algorithms 

( i ) Based on data size 

Sorts are generally classified as either external sorting or internal sorting. An internal sort 

is the sort in which all the data are held in the primary memory during the sorting 

process. An external sort uses primary memory for the data currently being sorted and 

secondary storage for any data that will not fit in the primary memory. 

( ii) Based on information about data 

Comparison based sorting: A comparison based algorithm orders a sorting array by 

weighing the value of one element against the value of other elements. Algorithms such 

as quick sort, merge sort, heap sort, bubble sort, and insertion sort are comparison based. 

Non-comparison based sorting: A non-comparison based algorithm sorts an array 

without consideration of pair wise data elements.  Bucket sort, radix sort are example of 

non comparison based.   



4 
 

In computer science and mathematics, a sorting algorithm is an algorithm that puts 

elements of a list in a certain order. The most-used orders are numerical order and 

lexicographical order. Efficient sorting is important to optimizing the use of other 

algorithms that require sorted lists to work correctly; it is also often useful for producing 

human-readable output. More formally, the output must satisfy two conditions:   

 The output is in non decreasing order.  

 The output is a permutation, or reordering of the input. 

Among simple sorting algorithms, the insertion sort seems to be better for small number 

of elements. Selection sorts while not bad does not takes advantage of the pre-existing 

sorting order. Several more complex algorithms (radix sort, shell sort, merge sort, heap 

sort and even quite fragile quick sort) are much faster on larger sets.  

One way to classify sorting algorithm is according to their complexity. There are so many 

other ways in which one of them is based on internal structure of the algorithm. 

 Swap-based sort:  These types of sort begin with entire list and exchange 

between a pair of elements and move towards more sorted list. 

 Merge-based sort: Creates initial “naturally” or “unnaturally” sorted sequence 

and then add either one element or merge two already sorted sequences. 

 Tree based sort: Two different types of approaches, one is based on heap and 

other is based on search trees. 

 Sequential sort: Sequential sorting algorithms are bubble sort, quick sort, merge 

sort and bucket sort. 

 Parallel sort: There are several sequential sorting algorithms that can be 

parallelized. 

 Some special versions are odd-even transposition sort, shell sort, hyper-quick sort 

and shear sort. 

 



5 
 

We can also classify the sorting algorithm based on other criteria. 

 Computational complexity: (best, average and worst case) in terms of the size of 

list (n). Good average number of comparisons is O (n log n) and bad is O(n
2
). 

 Stability: Stable sorting algorithm maintains the relative order of record with 

equal keys while unstable sorting algorithm does not maintains the relative order 

of record with equal keys. 

 Memory usage: (and use of the computer resource): Some sorting algorithm are 

“in place” such that O(1) or O(n log n ) memory is needed beyond the items being 

sorted, while others need to create auxiliary locations for data to be temporarily 

store. 

 Recursion: Some algorithms are either recursive or non recursive while other 

may be both (like merge sort). 

 Comparison-based: Whether or not they are a comparison sort. A comparison 

sort examines the data only by comparing two elements with a comparison 

operator. 

 The most popular sequential sorting algorithm is quick sort. It has the best expected 

performance. 

1.4 Method of Sorting 

There are several methods of sorting .some of them are below 

 Exchange sort: If two items are found to be out of order, they are interchanged. 

This process is repeated until no more exchanges are necessary. Bubble sort, 

Cocktail sort, Comb Sort, Gnome sort, Quick sort are examples of exchange 

sorting methods. 

 Selection sort: First the smallest item is located, and it is somehow separated 

from the rest; the next smallest is selected and so on. Selection sort, Heap sort 

Smooth sort, Strand sort Insertion sort are examples of this sorting method. 



6 
 

 Insertion sort: The items are considered one at a time, and each new item is 

inserted into appropriate position relative to the previously sorted items. 

Examples of these sorting methods are Shell sort, Tree sort, Library sort, Patience 

sort. 

  Merge sort: In this method merging two unsorted array into one sorted array. 

Merge sort is example of this kind of sorting method. 

  Non-comparison sort: Radix sort, Bucket sort, Counting sort, pigeonhole sort, 

Tally sort. 

 Other: Topological sorting, Sorting Network, biotonic sort. 

1.5 Why Sorting? 

Many computer scientists consider sorting to be most fundamental problem in the study 

of algorithms. There are several reasons [13]. 

 Sometime the need to sort information is inherent is an application. For example, 

in order to prepare customer statements, bank need to sort checks by check 

number. 

 Algorithms often use sorting as a key subroutine. For example, a program that 

renders graphical objects that are layered on top of each other might have to sort 

the object according to an “above” relation so that it can draw these objects from 

bottom to top.  

 Sorting is a problem for which we can achieve a nontrivial lower bound. Our best 

upper bound must match with lower bound asymptotically so we know that our 

sorting algorithm is optimal. 

 There is a wide variety of sorting algorithms and they use many techniques. In 

fact many important techniques used throughout algorithm design that have been 

developed over the years. So, sorting is a problem of historical interest. 

  Many engineering issues come to the fore when they implementing sorting 

algorithms. The fastest sorting program for a particular situation may depend 

upon many factors, such as prior knowledge about the keys and data, the memory 

hierarchy of the host computer and the software environment.   



7 
 

1.6 Organization of Thesis 

The thesis is organized as follows:  

Chapter-2 It presents some fundamental sorting algorithms with example. 

Chapter-3 It Presents some advanced sorting algorithms with example. 

Chapter 4 It include sorting algorithm which are used in sorting network. 

Chapter-5 It presents problem statement that could analyses the problem statement that 

we are going deal. 

Chapter-6 It presents results & discussion. 

Finally, the last chapter is devoted to the conclusion. 

                                                                                    

 

 

 

 

 

 

 

 

                                                                                    

 

 

 

 

 

 

 

 



8 
 

  CHAPTER 2 

            SOME FUNDAMENTAL SORTING ALGORITHMS 

2.1 Insertion Sort  

It is an efficient algorithm for sorting a small number of elements. The insertion sort 

works just like its name suggests, inserts each item into its proper place in the final list. 

Sorting a hand of playing card is one of the real time examples of insertion sort. Insertion 

sort can take different amount of time to sort two input sequences of the same size 

depending upon how nearly they already sorted. It sort small array fast but big array very 

slow. Following are the procedure to sort a given set of element {5, 2, 4, 6, 1, 3}. 

 

                                        Fig 2.1 Example of Insertion Sort 

 

Algorithm 

1. For I=2 to N 

2. A[I]=item ,J=I-1 

3. WHILE  j>0 and item<A[J]  

4. A[J+1]=A[J] 

5. J=J-1 

6. A[J+1]=item         

 

    Data       5       2      4                              6      1     3 

  1
st
 pass       2       5      4       6      1     3 

  2
nd

 pass       2       4      5       6      1     3 

  3
rd

 pass       2       4      5       6      1     3 

  4
th

 pass       1       2      4       5      6     3 

  5
th

 pass       1       2      3       4      5     6 



9 
 

2.2 Bubble Sort 

It is a simple and straightforward sorting algorithm used in computer science algorithm. It 

starts with compare with the first two elements and if first element is greater than the 

second then swaps it. It continues for each pair of elements to the end of data set. It again 

starts with the first two elements and repeating until no swap has occurred in the last 

pass. If we have 100 elements then the total number of comparison is 10000. Obviously, 

this algorithm is rarely used except in education. Example: we sort the letter of 

“PEOPLE” in lexicographical order according to bubble sort. 

 

PASS 1:   P   E   O   P   L   E         E   P   O   P   L   E        E   O   P   P   L  E 

                 E   O   P   P   L   E        E   O   P   L   P   E       E   O   P   L   E   P 

PASS 2:   E   O   P   L   E   P        E   O   P   L   E   P       E   O   P   L   E   P 

               E   O   L  P   E   P       E   O  L   E    P   P 

PASS 3:  E   O   L  E   P    P         E  O   L   E    P   P       E  L   O    E    P  P 

              E   L   E   O   P   P 

PASS 4:   E   L   E   O    P   P      E   L   E  O   P   P      E   E    L  O    P   P 

PASS 5:   E   E   L   O    P    P     E   E   O  L   P   P 

             Here there are 6 elements so number of comparison=5+4+3+2+1=15 

                And the number of pass=6-1=5. 

Algorithm 
1. for I=1 to N-1 (for pass) 

2. for k=1 to N-I (for comparison) 

3. if A[K]>A[K+1] 

4. swap [A(k) , A(k+1)] 

 



10 
 

2.3 Selection Sort 

It is among the most intuitive of all sorts. The basic rule of selection sort is to find out 

the smallest elements in each pass and placed it in proper location. These steps are 

repeated until the list is sorted. This is the simplest method of sorting. In this method, 

to sort the data in ascending order, the 0
th

 element is compared with all the elements. 

If 0th element is greater than smallest element than interchanged. So after the first 

pass, the smallest element is placed at the 0
th 

position. The same procedure is repeated 

for 1
th 

element and so on until the list is sorted. 

     Pass A[1] A[2]  A[3] A[4]  A[5]  A[6]  A[7] A[8] 

K=1,Loc=4  77    33     44    11    88    22    66   55 

K=2,Loc=6  11    33     44    77    88    22    66     55 

K=3,Loc=6  11    22     44     77    88    33    66   55 

K=4,Loc=6  11    22     33    77    88    44    66   55 

K=5,Loc=8  11    22     33         44    88    77    66   55 

K=6,Loc=7  11    22     33    44    55    77    66   88 

K=7,Loc=7  11     22    33    44    55    66    77        88 

Sorted   11    22    33    44    55    66    77   88 

                                       Fig 2.2 Example of Selection Sort 

Algorithm 

1. for I=1 to N-1 

2. min=A [I] 

3. for K=I+1 to N 

4. if (min>A [I]) 

5. min=A [K], Loc=K 

6. Swap (A [Loc],A[I]) 

7. Exit 



11 
 

.12 .21      .39 .68        .72 .94 

.17       .23 .78 

.26 

2.4 Bucket Sort 

Like counting sort, bucket sort is also fast because it assumes something about the input 

elements. Bucket sort is used when the elements are uniformly distributed over the 

interval [0 1). 

In bucket sort the interval [0 1) is to divide into n equal-sized subintervals or buckets and 

then distributed the n input number into buckets. Since the input are uniformly distributed 

over [0 1), we don‟t expect many numbers to fall into each bucket.   

             1           2          3          4           5           6            7         8         9          10           

.78 .17 .39 .26  .72 .94  .21  .12  .23  .68 

                                                                                                                                                           

             0        1            2         3            4          5         6            7          8           9              
                                                                                                                                                                                                                                     

       

 

 

 

                 

                                                         

                       

                           Fig 2.3 Example of Bucket Sort           

Algorithm 

1. n                   length (A) 

2. For I=1 to n 

3. Insert A[I] into list B[└ n.A[I]┘] 

4. For I=0 to N-I 

5. Start list B[I]with insertion sort. 

6. Concatenate the list B[0],B[1],B[2],………….,B[n-1] together in order. 

                      



12 
 

2.5 Quick Sort 

It is a very popular sorting algorithm invented by C.A. R. Hoare in 1962. The name 

comes from the fact that, in general, quick sort can sort a list of data elements 

significantly faster than any of the common sorting algorithms. This algorithm is based 

on the fact that it is faster and easier to sort two small arrays than one larger one. Quick 

sort is based on divide and conquer method. quick sort  is often the best practical choice 

for sorting because it is efficient on average i.e. it‟s expected running time is O(n log n) 

and the constant factors  hidden in O(n log n) are small. It‟s also having the advantage of 

sorting in place and it works well in virtual memory environments. The most direct 

competitor of quick sort is heap sort. Heap sort is typically somewhat slower than quick 

sort, but the worst-case running time is always O (n logn). Quick sort also competes with 

merge sort, another recursive sort algorithm but with the benefit of worst-case O (n logn) 

running time. Merge sort is a stable sort, unlike quick sort and heap sort. The main 

drawback of quick sort is that it achieves its worst case time complexity on data sets that 

are common in practice (sequences that are already sorted or mostly sorted).To avoid 

this, we modify quick sort so that it selects the pivot as a random element of the 

sequence. 

Quick sort is also known as partition-exchange sort. One of the elements is selected as the 

partition element known as pivot element. The remaining items are compared to it and a 

series of exchanges is performed. When the series of exchanges is done, the original 

sequence has been partitioned into three sub sequences. 

1. all items less than the pivot element 

2. the pivot element in its final place 

3. all items greater than the pivot element 

At this stage, step 2 is completed and quick sort will be applied recursively to steps 1 and 

3. The sequence is sorted when the recursion terminates. 

  



13 
 

Example of quick sort 

 

a)  
     3     2      1      5       8       4       3       7 

 

b)            

     1      2       3      5      8       4       3        7 

 c) 

     1     2      3       3      4       5        8        7 

 

d)       

    1     2      3       3       4       5        7        8 

e) 

   1    2      3       3       4       5       7        8 

                                             Fig 2.4 Example of Quick Sort 

Algorithm 

Quick sort (A, p, r) 

1. If p < r 

2. Then q        partition (A, p ,r) 

3. Quick sort ( A, p, q-1) 

4. Quick sort (A ,q+1 ,r) 

 

To sort an entire array A, the initial call is Quick sort (A, 1, length [A]). 

Partition the array 

The key to the algorithm is the PARTITION procedure, which rearranges the sub array A 

[p...r] in place. 

Partition (A, p, r) 

1. x         A[r] 

2. i         p-1 

3. For  j        p to r-1 

4. Do if A[j]<=x 

5. Then i        i+1 

6. Exchange A[i]          A[j] 

7. Exchange A[i+1]         A[r] 

8. Return i+1 



14 
 

2.6 Radix Sort 

Radix sort is stable, very fast and generally is an excellent algorithm on modern 

computers that usually have large memory.  It is the method used by the many people 

when alphabetizing a large list of names. The list of names is first sorted according to the 

first letter of each name. That is; the names are arranged in 26 classes, where the first 

class consists of those names that begin with “A”, the second class consists of those 

names that begin with “B” and so on. Radix sort is also useful to sort records of the 

information that are Keyed by multiple fields. For example we want to sort dates by three 

keys: year, month and day. Radix sort is used when the size of elements are very large. 

There are two approaches to radix sorting.  

 MSD (most-significant-digit radix sort methods): This methods examine the 

digits in the keys in a left-to-right order, working with the most significant digits 

first. MSD radix sorts partition the file according to the leading digits of the keys, 

and then recursively apply the same method to the subfiles.  

 LSD (least-significant-digit radix sort methods): The second class of radix-

sorting methods examine the digits in the keys in a right-to-left order, working 

with the least significant digits first.  

The code of radix sort is straightforward. The following procedure assumes that each 

element in the n-element array A has d digits, where digit 1 is the lower order digit and 

digit d is the highest order digit. 

Algorithm 

Radix sort (A, d) 

1. For I       1 to d 

2. Do use a stable sort to sort array A on digit i 

                                                 

 

 



15 
 

              0            1          2          3           4            5          6          7            8            9 

267                                                                                                267                                                                  

                                                                                                     

368                                                                                                             368 

                                                                                                                    

139                                                                                                                             

230     230 

896                                                                                    896 

732                                  732 

651                     651        

135                                                                        135 

               0           1            2            3             4             5           6           7          8         9 

230                                                 230 

651                                                                               651 

732                                                 732 

135                                                 135 

896                                                                                                                              896 

267                                                                                              267 

368                                                                                              368 

139                                                 139 

                 0        1              2              3          4            5             6           7          8           9 

230                                   230 

732                                                                                                        732 

135                    135 

139                    139 

651                                                                                             651 

267                                   267 

368                                                   368 

 896                                                                                                                      896   

Fig 2.5 Example of Radix Sort 



16 
 

2.7 Counting Sort 

This sorting algorithm sort the n input in the range 0 to k. The basic idea behind this 

sorting algorithm is that find out the number of elements less than for each input elements 

i.e. I, then only we find the final position of I. counting sort is use for integers in small 

range. 

This sorting algorithm must handle the situation in which several elements have the same                

value i.e. duplicate value. An important property of counting sort is that it is stable i.e. 

multiple keys with the same value are placed in the sorted array in the same order that 

they appear in the input array. Counting sort beats the lower bound of O (nlogn) because 

it is not a comparison sort. To sort the element using counting sort, we have to use three 

arrays. One is for input array A [1...n], output array B [1…n] and other is C [0...k] 

provides temporary working storage. 

  a)                   A                                                                                                B                                          

0    1      2    3      4    5                                                          1     2     3     4     5    6     7     8 

 

 

                                    Fig 2.6 Example of Counting Sort 

 

 

 

 

2 5 3 0 2 3 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           d)  0                     3  

1      2    3     4     5     6     7     8          

           

 

               1     2    3     4     5     6     7      8 

                                        

                                

 

2 0 2 3 0 1   1 2 4 6 7 8  

0     1     2     3     4      5 

  b)                  C                                                                                                                                                                                      

2 2 4 7 7 8  e)  0    3 3  

0    1      2     3     4     5 

 

c)                         B 

                                                                                           3    1 2 4 5 7 8                            

1   2       3    4      5    6      7     8  

                   C 

2 2 4 6 7 8  f) 0 0 2 2 3 3 3 5 



17 
 

 

Algorithm  

 

1.  for  I=0  to  K 

2.   C[I]=0 

3.  For j=1 to length [A] 

4.  C [A(J)]=C[A(J)]+1 

5.  For I=1 to K 

6. C[I]=C[I]+C[I-1] 

7.  For J=length(A) down to 1 

8.  B[C(A(J)]=A[J] 

9. C[A(J)]=C[A(J)]-1 

 

                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                  

 



18 
 

 

0.4 

 

1.1 

 

1.2 

1.8 

 

3.7 

 

5.9 

 

 

 

 

6.1 

 

7.3 

 

8.4 

 

10.5 

 

11.5 

 6.7 

                                                                                     CHAPTER 3 

     SOME ADVANCED SORTING ALGORITHMS 

 

3.1 Sorting with Address Computation (Proxmap Sort) 

It is the same as counting sort. In proxmap sort with the help of an address computation         

i.e. a mapping f (k) =address, a key is shifted in the first pass to the proximity of the final 

destination. 

Steps:  

1. Definition of the mapping 

2. Assignment of the neighbors 

3. The interchange of the keys 

4. Fine grained sorting 

Example 

 

  I 0 1 2 3 4 5 6 7 8 9 10 11 

A[I]  6.7 5.9 8.4 1.2 7.3 3.7 11.5 1.1 0.4 10.5 6.1 1.8  

 

           Mapping: map key (k) = └ k ┘ 

                                              

0 1 2 3 4 5 6 7 8 9 10 11 

     

  

                          

         

 

                                                  

         

                                  Fig 3.1 Example of Proxmap Sort                                                                                       



19 
 

3.2 Merge Sort 

Merging means combining two sorted list into one sorted list. The unsorted list is first 

divide in two half. Each half is again divided into two. This is continued until we get 

individual numbers. Then pairs of number are combined (merged) into sort list of two 

numbers. Pairs of these lists of four numbers are merged into sorted list of eight numbers. 

This is continued until the one fully sorted list is obtained. 

           

    4     2      7      8      5      1      3       6 

 

     4                2                7             8                             5              1                3                   6                                                                                       

 

      4               2              7               8                              5               1                3                 6  

 

      4              2                  7             8                               5               1                3               6 

 

      2              4                  7             8                               1              5                 3             6  

      

      2              4               7             8                                  1              3             5           6    

 

 

    1     2      3    4    5     6      7    8 

 

                                               Fig 3.2 Example of Merge Sort 

 



20 
 

3.3 Shell Sort 

It is introduced by D.l.Shell, which uses insertion sort on periodic subsequence of the 

input to produce a faster sorting algorithm. It is also known as diminishing increment 

sort. It is the first sorting algorithm to break the n
2
 barrier. It is fast, easy to understand 

and easy to implement. However, its complexity analysis is a little more sophisticated. It 

begins by comparison of an element that is at a distance   „d‟ which is initially half of the 

no. of elements in the array. Further in each path the value of d is reduced to half i.e   

di+1= (di+1)/2.    

The shell sort is still significantly slower than the merge, heap, and quick sorts, but its 

relatively simple algorithm makes it a good choice for sorting lists of less than 5000 

items unless speed is hyper-critical. It's also an excellent choice for repetitive sorting of 

smaller lists.                    

  

 

d=3       

d=2 

d=1 

                                                Fig 3.3   Example of Shell Sort 

3.4 Library Sort 

Library sort, or gapped insertion sort is a sorting algorithm that uses an insertion sort, but 

with gaps in the array to accelerate subsequent insertions. The name comes from an 

analogy: Suppose a librarian were to store his books alphabetically on a long shelf, 

starting with the as at the left end, and continuing to the right along the shelf with no 

spaces between the books until the end of the Zs. If the librarian acquired a new book that 

belongs to the B section, once he finds the correct space in the B section, he will have to 

move every book over, from the middle of the Bs all the way down to the Zs in order to 

make room for the new book. This is an insertion sort. However, if he were to leave a 

           12             9     -10  22    2   35   40 

           12             2      -10  22     9   35    40 

          -10             2       9  22     12   35    40 

          -10             2       9   12     22   35       40 



21 
 

space after every letter, as long as there was still space after B, he would only have to 

move a few books to make room for the new one. This is the basic principle of the 

Library sort. 

Library sort is a stable comparison sort and can be run as an online algorithm; however, it 

was shown to have a high probability of running in O (n log n) time (comparable to quick 

sort), rather than an insertion sort's O(n
2
). Its implementation is very similar to a skip list. 

The drawback to using the library sort is that it requires extra space for its gaps (the extra 

space is traded off against speed). 

3.5 Heap Sort 

A heap is a tree structure in which the root contains the largest (or smallest) element in 

the tree. The heap sort algorithm is an improved version of the selection sort in which the 

largest element (the root) is selected and exchanged with the last element in the unsorted 

list. Heap sort begins by turning the array to be sorted into a heap. This is done only once 

for each sort. We then exchange the root, which is the largest element in the heap, with 

the last element in the unsorted list. This exchange results in the largest element being 

added to the heap and exchange again. The reheap and exchange process continues until 

the entire list is sorted. Creating the heap requires nlog2n loops through the data.  The 

heap sort efficiency is O (nlog2n). Heap sort is not a stable sort. It mainly competes with 

merge sort, which has the same time bounds, but requires O (n) auxiliary space, whereas 

heap sort requires only a constant amount. The heap sort is the slowest of the O (n log n) 

sorting algorithms, but unlike the merge and quick sorts it doesn't require massive 

recursion or multiple arrays to work. This makes it the most attractive option for very 

large data sets of millions of items. 

Algorithm 

1. Build  Max Heap (A) 

2. For I      length [A] downto 2 

3. Do exchange A[1]       A[I] 

4.  Heap size [A]       heap size[A]-1 

5. Max heapify (A,1) 



22 
 

2 4 4 

4 2 2 1 

4 

2 1 

4 

3 1 

2 

3 

5 

1 

2 3 

3 4 

4 

2 

1 3 

2 

2 

3 1 2 

3 

1 1 

5 

  4 

 

Example of heap sort: 2, 4, 1, 5 

 

 

 

 

 

 

  

 

 

(build a heap) 

 

                                Now we apply heap sort 

 

 

 

 

1 2 3 4 5 

 

   

 

                                      Fig 3.4 Example of Heap Sort 



23 
 

3.6 Gnome Sort 

 It is a sorting algorithm, which is similar to insertion sort, except that moving an element 

to its proper place is accomplished by a series of swaps, as in bubble sort. Gnome Sort is 

based on the technique used by the standard Dutch Garden Gnome. Here is how a garden 

gnome sorts a line of flower pots. Basically, he looks at the flower pot next to him and 

the previous one; if they are in the right order he steps one pot forward, otherwise he 

swaps them and steps one pot backwards. Boundary conditions: if there is no previous 

pot, he steps forwards; if there is no pot next to him, he is done. It is conceptually simple, 

requiring no nested loops. The running time is O(n²), but in practice the algorithm can run 

as fast as Insertion sort. The algorithm always finds the first place where two adjacent 

elements are in the wrong order, and swaps them. It takes advantage of the fact that 

performing a swap can introduce a new out-of-order adjacent pair only right before or 

after the two swapped elements. It does not assume that elements forward of the current 

position are sorted, so it only needs to check the position directly before the swapped 

elements. 

If we wanted to sort an array with elements [4] [2] [7] [3], here is what would happen 

with each of the iteration of the while loop 

[4] [2] [7] [3] (initial state. i is 1 and j is 2) 

[4] [2] [7] [3]    (did nothing, but now i is 2 and j is 3.) 

[4] [7] [2] [3] (swapped a[2] and a[1]. now i is 1 and j is still 3.) 

[7] [4] [2] [3] (swapped a[1] and a[0]. now i is 1 and j is still 3.) 

[7] [4] [2] [3] (did nothing, but now i is 3 and j is 4.) 

[7] [4] [3] [2] (swapped a[3] and a[2]. now i is 2 and j is 4.) 

[7] [4] [3] [2] (did nothing, but now i is 4 and j is 5.) 

At this point the loop ends because it isn't equal to 4. 

3.7 Stack Sort 

This algorithm is called Stack Sort here as it uses the data structure stack in both the 

distribution and collection phases, which are described below. 



24 
 

The group of stacks is managed by maintaining an ordered linked list of pointers to the 

stacks. The individual stacks are also maintained as linked lists. Arrays are unsuitable for 

the stacks and also for the pointers to them as the size of the individual stacks and the 

pointers list can vary widely between 1 and N, where N is the size of the input. 

The algorithm is sensitive to the order already existing in the input: 

 The best case occurs when the input is already in increasing order, because only 

one sublist holding all the N items would be formed. 

 The worst case occurs when the input is already sorted in reverse order, because 

there will be N sublists, each containing only one item. 

The algorithm involves only comparisons between items and no data exchanges. The 

algorithm selects maximum items like HeapSort. The maximum item is the tail item of 

the first sublist. There is little work involved in the maintenance of the sublists in the 

required order. However, on the negative side, there is the overhead of maintaining 

pointers for the linked lists and extra space requirement. 

3.7.1 The distribution phase of Stack Sort 

The distribution phase uses the algorithm described by Moffat and Petersson [Moffat, 

1992]. 

 In this phase the input list is distributed into sublists in such a way that 

 Each sublist contains an ascending subsequence from head to tail, the tail item 

is greater than or equal to every other item in the sublist. 

 The sublists are also ordered so that their tail items are in descending order. The 

tail item of the first sublist is greater than the tail item of the second sublist, 

which is greater than the tail item of the next sublist and so on. 

 

For example, consider the following input list. 

(9, 5, 6, 3, 8, 7, 1, 11, 2, 10, 5, 12) 

sublist1      9 11 12 

sublist2      5 6 8 10 

sublist3      3 7 

sublist4      1 2 5 

Note that at the end of the distribution phase: 



25 
 

 The items in each sublist are in increasing order from head to tail constituting one 

'run', but the items are not adjacent in the input. 

 The tail items of the sublists are in descending order. The tail item of sublist1 is 

the largest item in the input list. 

 The number of sublists, 4, is less than the number of runs, 7, in the original data. 

3.7.2 The collection phase of Stack Sort 

The tail item of sublist1, the maximum item, is deleted from that list and written to the 

output list. The sublists are rearranged, if necessary, such that the tail items continue to be 

in descending order. The tail item of sublist1 continues to supply the next maximum to be 

written to the output list. The process continues until all items are written to the output 

list. 

Since all the actions on each sublist take place on its tail item, the stack structure is ideal 

for the sublist implementation. The output list also collects the items in reverse, 

descending, order. The output list may also be implemented as a stack. 

Working of the collection phase may be illustrated using the sublists above. The sublists 

are now designated as stacks S1, S2, etc. The following stacks were formed at the end of 

the distribution phase: 

S1 9 11 12 

S2 5 6 8 10 

S3 3 7 

S4 1 2 5 

(Stacks are shown growing to the right; the right most element is at the top) 

Start by popping 12 from S1 and pushing it on to the output stack. This is followed by 

popping 11 from S1 and pushing it on to output stack. Now the stack S1 has its tail item, 

9, less than the tail item of the second stack. Hence the stacks are reordered as follows to 

maintain the tail items in descending order. 

S2 5 6 8 10 

S1 9 

S3 3 7 

S4 1 2 5 

Now 10 is popped from the first stack S2, and the stacks reordered: 



26 
 

S1 9 

S2 5 6 8 

S3 3 7 

S4 1 2 5 

Continuing in this fashion: 

pop 9 : S2 5 6 8                                pop 8 : S3 3 7                                   pop 7 : S2  5 6 

            S3 3 7                                               S2 5 6                                               S4 1 2 5 

           S4 1 2 5                                             S4 1 2 5                                            S3 3 

pop 6 : S2 5                                       pop 5 : S4 1 2 5                               pop 5 : S3 3 

            S4 1 2 5                                             S3 3                                                 S4 1 2 

            S3 3 

pop 3 : S4 1 2 

Now the single stack S4 will be popped out. 

 

3.8 DeqSort 

The main disadvantage of Stack Sort is its worst case behavior when the input list is 

sorted in the reverse order. This type of input can be tackled as efficiently as in the case 

of input in the right order if the sublists are implemented as double ended queues (Deqs): 

an item greater than the tail item of a sublist is appended to it, an item less than the head 

item of a sublist is prepended to it. This constitutes the basic difference between Stack 

Sort and DeqSort. 

3.8.1 The distribution phase of DeqSort 

The first item of the input starts the first sublist, becoming its first member. Each of the 

remaining items in the input list is considered in turn. It is compared with the tail item of 

the first sublist and if it is greater than or equal to the tail, the input item is appended to 

the list. Otherwise it is compared with the head item, and prepended to the list if it is 

smaller than or equal to the head item. If it cannot be appended or prepended to the 

sublist, similar comparison continues with the second or subsequent sublists, and the item 

is appended or prepended to the first suitable sublist. If the item cannot be appended or 

prepended to any existing sublist, a new sublist is started with the input item as its first 

member. 



27 
 

Each sublist holds one subsequence in ascending order from head to tail. The tail item in 

each sublist is the largest in that sublist. The sublists themselves are also ordered such 

that their respective tail items are in descending order. In addition, the head items are in 

ascending order. 

For example, consider the same input list which was used to illustrate the StackSort in 

Section 3.7.1. 

              (9, 5, 6, 3, 8, 7, 1, 11, 2, 10, 5, 12) 

              The sublists SL1, SL2,...will be built as follows. 

read 9 : SL1   9                     read 5 :  SL1    5 9                                    read 6 :SL1   5  9 

                                                                                                                            SL2   6 

read 3 : SL1 3 5 9                  read 8 : SL1 3 5 9                                       read 7 : SL1 3  5 9 

            SL2 6                                      SL2 6 8                                                    SL2 6 8 

                                                                                                                             SL3 7 

..... and so on. 

At the end this phase the following sublists will be produced: 

SL1   1 3 5 9 11 12 

SL2   2 6 8 10 

SL3   5 7 

Note that 

 The number of sublists, 3, is smaller than the number of runs, 7; and also smaller 

than the number of sublists produced by StackSort. 

 The head items are in ascending order. 

3.8.2 The collection phase of DeqSort 

In the collection phase one can extract either the head items (current minimum) or the tail 

items (current maximum) from the first sublist. The description below is for the option of 

extracting head items. The extraction of head items results in writing to output in 

ascending order. Once an item is extracted, it will not be simple to reorder the sublists so 

as to maintain both the head and the tail items in the required order. Thus only the head 

items will be maintained in ascending order. 



28 
 

Working of the collection phase may be illustrated using the following sublists which 

were formed at the end of the distribution phase: 

SL1 1 3 5 9 11 12 

SL2 2 6 8 10 

SL3 5 7 

Start by dequeueing 1 from SL1 and writing it to the output list. Since the new head of 

SL1 (3) is greater than head of SL2, reorder the lists: 

SL2   2 6 8 10 

SL1   3 5 9 11 12 

SL3   5 7 

Dequeue 2, append it to output list, reorder the lists: 

SL1   3 5 9 11 12 

SL3   5 7 

SL2   6 8 10 

Continuing in this fashion: 

Deque 3 : SL1   5 9 11 12                  Deque 5 : SL3   5 7 

                 SL3   5 7                                            SL2   6 8 10 

                 SL2   6 8 10                                       SL1   9 1 12 

Deque 5 : SL2   6  8  10                     Deque 6 : SL3   7                  Deque 7 :SL2 8 10 

                 SL3   7                                               SL2   8 10                               SL1 9 11 12 

                 SL1   9 1   12                                      SL1 9 11 12 

Deque 8 : SL1 9 1 12                          Deque 9 : SL2 10                    Deque 10 : SL1 11 12 

                 SL2 10                                                SL1 11 12         SL1 can be written out. 

 

3.9 MinMax Sort 

At the end of the distribution phase of DeqSort (Section 3), the sublists are ordered in 

such a way that the head items are in ascending order and the tail items are in descending 

order. The collection phase however maintains only the head items in ascending order 

while extracting the minimum items. MinMaxSort is a variation of DeqSort in which both 



29 
 

the minimum and the maximum items are extracted at the same time. This would require 

that the sublists maintain both the head and the tail items in the required order. 

3.9.1 The distribution phase of MinMaxSort 

This is identical to the distribution phase of DeqSort and is already described in Section 

3.8.1. 

3.9.2 The collection phase of MinMaxSort 

The MinMaxSort extracts items from both ends of the first sublist as follows. 

From the head side of the first sublist it retrieves all items smaller than or equal to the 

head item of the next sublist. From the tail side of the first sublist it retrieves all items 

greater than or equal to the tail item of the next sublist. Items extracted from the head side 

are written to the lower end of output list, the ones extracted from the tail end are written 

to higher end of output list. 

The rest of the items from the first list, if any, are inserted in the correct order between 

the head and tail of the second sublist. The number of sublists is thus reduced by one, the 

second being now the first, and the head and tail items of the sublists continue to be in the 

required order. 

Extraction of head/tail items and reinsertion of middle items continues in this way until 

only one sublist is left. The last one is then written to the output list. 

Working of the collection phase may be illustrated using the sublists produced in Section 

3.8.1. 

SL1 1 3 5 9 11 12 

SL2 2 6 8 10 

SL3 5 7 

Operate on the first sublist SL1. 

 Extract 1 from head end, write it to left section of output, extract 12 and 11 from 

tail end, write them to right section of output, insert the rest (3 5 9) in the second 

list SL2. 

This results in the following sublists: 

SL2 2 3 5 6 8 9 10 

SL3 5 7 

 



30 
 

Operate on SL2. 

 Extract 2, 3, 5 from head end, write to left section of output, and extract 10, 9, 8 

from  tail end, write to right section of output, insert the rest (6) in SL3. 

Now a single sublist is left. SL3  5 6 7. 

SL3 is written to the output list. 

MinMaxSort, similar to DeqSort, handles input ordered in any way almost equally well. 

The best case occurs when input is already sorted, whether right or reverse order does not 

matter. 

To facilitate the append/prepend operations in the distribution phase and also the 

extraction of the head and tail items in the collection phase, the sublists are best 

maintained as doubly linked lists. 

MinMaxSort has the potential to reduce the number of sublists significantly. However, it 

is more complicated than DeqSort and has higher storage overhead as the sublists are 

doublylinked. 

 

3.10 New sorting algorithm [21,22] 

 
It is a new sorting algorithm introduced by kiran kumar sundararajan and Soubhik 

chakraborty. This sorting algorithm works on the “divide and conquer strategy” similar to 

quick sort but the use of auxiliary array results in avoiding interchanges of elements, 

thereby sacrificing space. This sorting algorithm work well for n<=1,5,00,000 as 

comparison to heap sort. However it slows down for higher n.  

 

Step 1: Initialize the first element of the array as a pivot (key) element. 

Step 2: Starting from the second element, compare it to the pivot element. 

Step 2.1: if pivot < element then place the element in the last unfilled position of a 

temporary array (of same size as the original one). 

Step 2.2: if pivot > element then place the element in the first unfilled position of the 

temporary array. 

Step 3: repeat step 2 till last element of the array. 



31 
 

Step 4: finally place the pivot element in the blank position of the temporary array (the 

blank position is created because one element of the original array was taken out as pivot) 

Step 5: split the array into two, based on the pivot element's position. 

 

 Pseudo Code 

 

My_sort (int numbers[], int b[],int l, int r) 

{ 

// pivot=first element of array, low=l, up=r ,numbers[] is the Original array, b[] is temp 

array. 

//l is left index and r is right index 

// My logic starts here. 

 

for (i=l+1; i<=r; i++) 

{ 

if (numbers[i] <= pivot) 

{ 

b[low] = numbers[i]; 

low++; 

} 

else 

{ 

b[up]=numbers[i]; 

up--; 

} 

} 

b[low]=pivot; 

for (i = l; i <= r; i++) 

numbers[i]=b[i]; 

if (l < up-1) 

My_sort(b,numbers, l, up-1); 

if(up+1 < r) 

My_sort(b,numbers, up+1,r); 

} 

                                                                      

                                                                                                             

 

 

                                                                                                                    



32 
 

                                                                                                                 CHAPTER4 

  SORTING NETWORK  

4.1Bitonic Sort  

It is a kind of sorting network which sort n elements in O(log
2 

n) Time. The operation of 

the bitonic sorting network is the rearrangement of a bitonic sequence into a sorted list. 

Biotonic sequence 

 A bitonic sequence is a sequence of the elements(a0,a1,…………an-1) with the two   

property  that  either 1 ) there exits an index i , 0<=i<=n-1,such that (a0,a1,……………,ai) 

is monotonically increasing and (ai+1,…………an-1) is monotonically decreasing .or 

2) There is a cyclic shift of indices so that (1) is satisfied. 

Examples are {1,4,6,8,3,2},{6,9,4,2,3,5},{9,8,3,2,4,6}. 

 We have a method for merging a bitonic sequence into a sorted sequence. This method is 

easy to implement on a network of comparators.This network of comparators, known as 

bitonic merging network. Following are the example of merging a 16 element biotonic 

sequence through a series of log16 bitonic splits.  

 

Original 

Sequence       3      5     8     9     10     12     14     20     95      90     60     40     35     23    18      0 

1st split           3      5     8     9     10    12     14      0      95      90      60     40    35     23    18      95 

2nd split          3     5     8     0     10    12     14      9      35      23      18     20    95     90    60      40 

3rd split          3      0     8     5     10     9      14     12     18     20       35     23    60     40    95      90 

4th split          0     3     5     8        9      10     12     14    18      20       23     35    40     60    90      95 



33 
 

                                        Fig 4.1 Example of Biotonic Sort 

                                  

         

                                       

                                  Compare exchange operator 

 



34 
 

4.2 Odd-even Sorting Network 

The odd-even transposition algorithm sorts n elements in n phase where n is even. This 

algorithm alternate between two phases called the odd and even phases. Let 

(a1,a2……..,an) be the sequence to be sorted. During the odd phase, elements with odd 

indices are compared with their right neighbors and if they are out of sequence they are 

exchanged i.e. the pair (a1,a2),(a3,a4)…………(an-1,an) are compare-exchanged where n is 

even. And during even phase, pairs (a2,a3),(a4,a5),………..(an-2,an-1) are compare-

exchanged. 

Algorithm 

1. Begin 

2. For I=1 to n do 

3. Begin 

4.  If  I is odd then 

5.  For j=0 to n/2-1 do 

6. Compare-exchange(a2j+1 ,a2j+2) 

7. If n is even then 

8. For j=1 to n/2-1 do 

9. Compare-exchange(a2j,a2j+1) 

10. End for. 

          Example 

                                    3      2      3        8      5      6    4     1    

           Phase 1(odd)    2      3      3       8      5       6    1     4    

          Phase 2(even)    2      3      3       5      8       1    6     4    

          Phase 3(odd )    2      3      3       5      1       8    4     6    

          Phase 4 (even)   2      3      3       1      5      4     8     6    

          Phase 5(odd)    2      3      1       3     4       5     6      8  

          Phase 6(even)   2      1      3       3     4       5    6       8  

     Phase 7(odd)     1      2      3       3     4       5     6     8  

          Phase 8(even)    1      2      3      3     4        5    6      8   

                                                                                                                                          



35 
 

                                                                                                                                         CHAPTER 5                                                                                

PROBLEM STATEMENT   

 

The problem of sorting is a problem that arises frequently in computer programming. 

Many different sorting algorithms have been developed and improved to make sorting 

fast. As a measure of performance mainly the average number of operations or the 

average execution times of these algorithms have been investigated and compared. 

5.1 Problem statement    

All sorting algorithms are nearly problem specific. How one can predict a suitable sorting 

algorithm for a particular problem? What makes good sorting algorithms? Speed is 

probably the top consideration, but other factors of interest include versatility in handling 

various data types, consistency of performance, memory requirements, length and 

complexity of code, and stability factor (preserving the original order of records that have 

equal keys).  

For example, sorting a database which is so big that cannot fit into memory all at once is 

quite different from sorting an array of 100 integers. Not only will the implementation of 

the algorithm be quite different, naturally, but it may even be that the same algorithm 

which is fast in one case is slow in the other. Also sorting an array may be different from 

sorting a linked list.  

5.2 Justification  

In order to judge suitability of a sorting algorithm to a particular problem we need to see 

 Are the data that application needs to sort tending to have some pre existing 

order?  

 What are properties of data being sorted? 

 Do we need a stable sort? 



36 
 

 Can you use some "extra" memory or need "in-place" soft? (with the current 

computer memory sizes we  usually can afford some additional memory so 

"in-place" algorithms no longer have any advantages).  

Generally the more we know about the properties of data to be sorted, the faster we can 

sort them. As we already mentioned the size of key space is one of the most important 

factors (sort algorithms that use the size of key space can sort any sequence for time O (n 

log k). 

5.3 Explanation 

 
Many different sorting algorithms have been invented so far. Why are there so many 

sorting methods? For computer science, this is a special case of question, “why there are 

so many x methods?”, where x ranges over the set of problem; and the answer is that each 

method has its own advantages and disadvantages, so that it outperforms the others on the 

same configurations of data and hardware. Unfortunately, there is no known “best” way 

to sort; there are many best methods, depending on what is to be sorted on what machine  

and for what purpose. There are many fundamental and advance sorting algorithms. All 

sorting algorithm are problem specific means they work well on some specific problem, 

not all the problems. All sorting algorithm apply to specific kind of problems. Some 

sorting algorithm apply to small number of elements, some sorting algorithm suitable for 

floating point numbers, some are fit for specific range like (0 1].some sorting algorithm 

are used for large number of data, some are used for data with duplicate values. 

It is not always possible to say that one algorithm is better than another, as relative 

performance can vary depending on the type of data being sorted. In some situations, 

most of the data are in the correct order, with only a few items needing to be sorted; In 

other situations the data are completely mixed up in a random order and in others the data 

will tend to be in reverse order. Different algorithms will perform differently according to 

the data being sorted.  

 

 

                                                                                                                                           



37 
 

CHAPTER 6                                                                                                                                            

RESULT AND DISCUSSION 

 

6.1 Problem Definition and Sorting Algorithms 

All the sorting algorithms are problem specific. Each sorting algorithms work well on 

specific kind of problems. In this table we described some problems and analyses that 

which sorting algorithm is more suitable for that problem. 

                             

                               Table 6.1: problem definition and sorting algorithms 

              Problem Definition     Sorting Algorithms 

The data to be sorted is small enough to fit into a processor‟s 

main memory and can be randomly accessed i.e. no extra space 

is required to sort the records (Internal Sorting). 

 

 Insertion Sort, 

Selection Sort, Bubble 

Sort 

Source data and final result are both sorted in hard disks (too 

large to fit into main memory), data is brought into memory for 

processing a portion at a time and can be accessed sequentially 

only (External Sorting). 

 

Merge Sort (business 

application, database 

application) 

The input elements are uniformly distributed within the range 

[0, 1). 

 Bucket Sort 

Constant alphabet (ordered alphabet of constant size, multi set 

of characters can be stored in linear time), sort records that are 

of multiple fields. 

 Radix Sort 

The input elements are small. 

 

 Insertion Sort 

The input elements are too large. Merge Sort, Shell Sort, 

Quick Sort, Heap Sort 

The data available in the input list are repeated more times i.e. 

occurring of one value more times in the list. 

Counting Sort 

The input elements are sorted according to address (Address 

Computation). 

 Proxmap Sort, Bucket 

Sort 



38 
 

The input elements are repeated in the list and sorted the list in 

order to maintain the relative order of record with equal keys. 

 

Bubble Sort, Merge 

Sort, Insertion Sort, 

counting sort 

The input elements are repeated in the list and sorted the list so 

that their relative orders are not maintain with equal keys. 

Quick Sort, Heap Sort, 

Selection Sort, Shell 

Sort 

A sequence of values, a0, a1… an-1, such that there exists an  i, 0 

≤ i ≤ n −1, a0 to ai is monotonically increasing and ai to an-1 is 

monotonically decreasing. (sorting network) 

 

 Biotonic -merge Sort 

Adaptive sorting algorithms that are comparison based and do 

not put any restriction on the type of keys, uses data structure 

like linked list, stack, queue.  

 

Stack sort , deqsort, 

minmax sort 

                           

In the above table 1, we see that a sorting algorithm depends upon the characteristics of 

problem. Like given list is sorted so that maintain the relative order of records with equal 

keys, repeated value occurs more times and the elements in the list are small ,counting 

sort is efficient. Quick sort and heap sort both are use for large number and also satisfy 

the property of unstable. The worst case running time for quick sort is O(n
2
) which is 

unacceptable for large sets but typically faster due to better cache performance. Heap sort 

also competes with merge sort ,which has the same time bound but requires O(n) 

auxiliary space, whereas heap sort requires only a constant amount. Heap sort is unstable 

while quick sort is stable sort. Bucket sort is used when give list is sorted according to 

address and the elements of list are uniformly distributed over a range (01]. Insertion sort 

and selection sort both are internal sorting but one is stable and another is unstable. 

Therefore to chose a best sorting algorithm first of all analyze the characteristics of 

problem. After that apply the sorting algorithm to find the best optimal solution. 

 

6.2 Strengths and Weakness 

Every sorting algorithm has some advantages and disadvantages. In the following table 

we are tried to show the strengths and weakness of some sorting algorithms according to 

their order, memory used, stability, data type and complexity. To determine the good 

sorting algorithm ,speed is the top consideration but other factor  include handling 



39 
 

various data type, consistency of performance, length and complexity of code, and the 

prosperity of stability. 

                                     Table 6.2: strength and weakness of various sorting algorithm 

 

sort     order worst case memory  stable  data type complexity 

MSD radix 

sort 

     n       n NK+NP+STACK    yes strings    high 

Ternary 

quick sort 

  n log n  

 

     n
2
 NK+NP+STACK    yes strings    high 

quick sort   n log n  

 

     n
2
 NK+NP+STACK    no     all    high 

merge   n log n  

 

  n log n  

 

NK+2NP+STACK    yes    all    medium 

heap   n log n  

 

  n log n  

 

     NK+NP    no    all    medium 

combo   n log n  

 

  n log n  

 

    NK+NP    no    all    low 

Shell 

 

 n (log n)2  

 

      n     NK+NP    no    all   low 

insertion     n
2
      n

2
     NK+NP   yes    all very low 

selection     n
2
      n

2
    NK+NP   yes   all very low 

 

 

6.3 Comparison of Various Sorting Algorithms [24] 

In the following table, compare sorting algorithms according to their complexity, method 

used by them like exchange, insertion, selection, merge and also mention their 

advantages and disadvantages. In the following table, n represent the number of elements 

to be sorted. The column Average and worst case give the time complexity in each case. 

These all are comparison sort. So the reader with a particular problem in mind can chose 

the suitable sorting algorithm.  

 

 

 

 

 



40 
 

6.3.1 Comparison of Comparison Based Sorting Algorithms 
 

                                          Table 6.3: Comparison of Comparison Based Sort 
 

Name  Average Case Worst 

Case 

Method  Advantage/Disadvantage 

Bubble Sort O(n
2
) O(n

2
) Exchange 1. Straightforward, simple and 

slow.  

2. Stable. 

3. Inefficient on large tables. 

Insertion 

Sort 

O(n
2
) O(n

2
) Insertion 1. Efficient for small list and 

mostly sorted list. 

2. Sort big array slowly.  

3. Save memory 

 

Selection 

Sort 

O(n
2
) O(n

2
) Selection 1. Improves the performance of 

bubble sort and also slow. 

2. Unstable but can be 

implemented as     a stable sort. 

3. Quite slow for large amount of 

data. 

Heap Sort O(n log n) O(n log n) Selection 1. More efficient version of 

selection sort. 

2. No need extra buffer. 

3. Its does not require recursion. 

4. Slower than Quick and Merge 

sorts. 

 

Merge Sort O(n log n) O(n log n) Merge 1. Well for very large list, stable 

sort. 

2. A fast recursive sorting. 

3. Both useful for internal and 

external sorting. 

4. It requires an auxiliary array 

that is as large as the original array 

to be sorted. 

In place-

merge Sort 

 O(n log n) O(n log n) Merge 1. Unstable sort. 

2. Slower than heap sort. 

3. Needs only a constant amount 

of extra space in addition to that 

needed to store keys. 

 



41 
 

Shell Sort   O(n log n) O(nlog
2
n) Insertion  1. Efficient for large list. 

2. It requires relative small amount 

of memory, extension of insertion 

sort. 

3. Fastest algorithm for small list 

of elements. 

4. More constraints, not stable. 

    

Cocktail 

Sort 

 O(n
2
) O(n

2
) Exchange 1. Stable sort. 

2. Variation of bubble sort. 

3. Bidirectional bubble sort. 

Quick Sort O(n log n) O(n
2
) Partition 1. Fastest sorting algorithm in 

practice but sometime Unbalanced 

partition can lead to very slow 

sort. 

2. Available in many slandered 

libraries. 

3. O (log n) space usage. 

4. Unstable sort and complex for 

choosing a good pivot element. 

Library sort O(n log n) O(n
2
) Insertion 1.Stable 

2. It requires extra space for its 

gaps. 

Gnome sort  O(n
2
) O(n

2
) Exchange 1.Stable 

2. Tiny code size. 

3. similar to insertion sort. 

 

 

6.3.2 Comparison of Non Comparison Based Sorting Algorithms 

 

The following table described sorting algorithm which are not comparison sort. 

Complexities below are in terms of n, the number of item to be sorted, k the size of each 

key and s is the chunk size use by implementation. Some of them are based on the 

assumption that the key size is large enough that all entries have unique key values, and 

hence that n << 2
k
. 

 

 

 

                          



42 
 

                           Table 6.4: Comparison of Non -Comparison Sort 

Name  Average 

Case 

Worst  Case n<<2
K
 Advantage/disadvantage 

Bucket Sort O(n.k) O(n
2
.k) No 1. Stable, fast. 

2. Valid only in range o to 

some maximum value M. 

3. Used in special cases when 

the key can be used to 

calculate the address of 

buckets. 

 

Counting Sort O(n+2
k
) O(n+2

k
) Yes 1. Stable, used for repeated 

value. 

2. Often used as a subroutine 

in radix sort. 

3. Valid in the rang(o k] 

Where k is some integer. 

Radix Sort 
O(n.

k

s
) 

 

O(n.
k

s
) 

 

No 1. Stable, straight forward 

code. 

2. Used by the card-sorting 

machines. 

3. Used to sort records that 

are keyed by multiple fields 

like date (Year, month and 

day). 

MSD Radix 

Sort 
O(n.

k

s
) 

 

O(n.
k

s
) 

 

No 1. Enhance the radix sorting 

methods, unstable sorting. 

2. To sort large computer 

files very efficiently without 

the risk of overflowing 

allocated storage space. 

3. Bad worst-case 

performance due to 

fragmentation of the data into 

many small sub lists. 

4. It inspects only the 

significant characters. 

LSD Radix 

Sort 
O(n.

k

s
) 

 

O(n.
k

s
. 2s) 

 No 1. It inspects a complete 

horizontal strip at a time. 

2. It inspects all characters of 

the input. 

3. Stable sorting method. 



43 
 

                                                                                                                 CHAPTER 7 

         CONCLUSION  

 

In this thesis, we have study about various sorting algorithms. Therefore, to sort a list of 

elements, First of all we analyzed the given problem i.e. the given problem is of which 

type (small numbers, large values). After that we apply the sorting algorithms but keep in 

mind minimum complexity, minimum comparison and maximum speed. In this thesis we 

also discuss the advantages and disadvantages of sorting techniques to choose the best 

sorting algorithms for a given problem. Finally, the reader with a particular problem in 

mind can choose the best sorting algorithm. 

From time to time people ask the ageless question: Which sorting algorithm is the better? 

This question doesn't have an easy or unambiguous answer, however. The speed of 

sorting can depend quite heavily on the environment where the sorting is done, the type 

of items that are sorted and the distribution of these items. 

There are two major factors when measuring the performance of a sorting algorithm. The 

algorithms have to compare the magnitude of different elements and they have to move 

the different elements around. So counting the number of comparisons and the number of 

exchanges or moves made by an algorithm offer useful performance measures. When 

sorting large record structures, the number of exchanges made may be the principal 

performance criterion, since exchanging two records will involve a lot of work. When 

sorting a simple array of integers, then the number of comparisons will be more 

important. 

Sorting algorithms work well on specific type of problem. Some sorting algorithms 

maintain the relative order of record with equal keys like bubble sort, merge sort, 

counting sort, insertion sort. Quick sort, heap sort, selection sort, shell sort sorted the 

input list so that the relative order are not maintain with equal keys. When no extra space 

is required to sort the record we use insertion sort, selection sort, bubble sort (internal 

sorting). Merge sort (external sorting) is used in business application, database 

application. Bucket sort is used when the data to be sorted are uniformly distributed 



44 
 

within the range (0 1]. Insertion sort is used for small number of element while merge 

sort, quick sort, heap sort are used for large list. Counting sort is used when the data 

available in the input list are repeated more number of times. The input lists are sorted 

according to address (address computation) proxmap sort and bucket sort are used. 

 The selection sort is a good one to use. It is intuitive and very simple to program. It 

offers quite good performance, its particular strength being the small number of 

exchanges needed. For a given number of data items, the selection sort always goes 

through a set number of comparisons and exchanges, so its performance is predictable. 

Among non-stable algorithms Shell sort is probably the most underappreciated and quick 

sort   is one of the most overhyped. Quick sort is a fragile algorithm because the choice of 

pivot is equal to guessing an important property of the data to be sorted (and if it went 

wrong the performance can be close to quadratic). Without enhancements it does not 

work well on "almost sorted" data (for example sorted in reverse order) and that is an 

important in real world deficiency. 

Shell sort and heap sort don't show too much of a difference, even though the former 

might be slightly slower in average with very big arrays. Almost sorted arrays seem to be 

faster for both to sort. 

The common sorting algorithms can be divided into two classes by the complexity of 

their algorithms. The two classes of sorting algorithms are O(n
2
), which includes the 

bubble, insertion, selection, and shell sorts; and O(n log n) which includes the heap, 

merge, and quick sorts.  Quick sort is efficient only on the average, and its worst case is 

n
2
, while heap sort has an interesting property that the worst case is not much different 

from an average case.  

In addition to algorithmic complexity, the speed of the various sorts can be compared 

with empirical data. Since the speed of a sort can vary greatly depending on what data set 

it sorts, accurate empirical results require several runs of the sort be made and the results 

averaged together.  



45 
 

Some examples of sorting algorithms based on the two phase paradigm are Merge Sort, 

Natural Merge Sort, Radix Sort [Aho, 1974], [Kingston, 1990]. 

The Stack Sort, DeqSort and MinMax Sort algorithms are based only on comparison of 

input data elements. They involve no data exchanges, which are required in most other 

algorithms such as Insertion Sort, Selection Sort, Heap Sort and Quick Sort. When the 

size of the elements to be sorted is large, absence of data exchanges is an advantage. 

Most internal sorting algorithms need the input data to be read into an array for sorting. 

Stack Sort, DeqSort and MinMax Sort do not need to do this. The data read from an input 

file can be inserted straight into an appropriate sublist in the distribution phase. 

After analyzing the different sorting algorithm for particular problems, we conclude that, 

based on the problem characteristics different algorithms are efficient for different 

problems. We can‟t say particular sorting algorithm is efficient for all kind of problems. 

Based on problem criteria and characteristics one of the sorting algorithm is efficient.  

Like this for different problems different sorting algorithms are suitable to find best 

optimal solution. 

 

 

 

 

 

 

 

 

 

 



46 
 

        ANNEXURE-I 

    REFERENCES 

 

[1] Knuth, D.”The Art of Computer programming Sorting and Searching”, 2nd 

edition, vol.3. Addison- Wesley, 1998. 

[2] Wirth, N., 1976. “Algorithms + Data Structures = Programs”: Prentice-Hall, Inc. 

Englewood Cliffs, N.J.K. Mehlhorn. Sorting and Searching. Springer Verlag, 

Berlin, 1984. 

[3] LaMarca and R. Ladner.” The Influence of Caches on the Performance of 

Sorting.” In Proceeding of the ACM/SIAM Symposium on Discrete Algorithms, 

pages 370–379, January 1997. 

[4] Hoare, C.A.R. “Algorithm 64: Quick sort”. Comm. ACM 4, 7 (July 1961), 321.  

[5] G. Franceschini and V. Geffert. “An In-Place Sorting with O (n log n) 

Comparisons and O (n) Moves”. In Proc. 44th Annual IEEE Symposium on 

Foundations of Computer Science, pages 242–250, 2003. 

[6] D. Jim´enez-Gonz´alez, J. Navarro, and J. Larriba-Pey. CC-Radix: “A Cache 

Conscious Sorting Based on Radix Sort”. In Euromicro Conference on Parallel 

Distributed and Network based Processing, pages 101–108, February 2003. 

[7] J. L. Bentley and R. Sedgewick. “Fast Algorithms for Sorting and Searching 

Strings”, ACM-SIAM SODA ‟97, 360–369, 1997. 

[8] Flores, I. “Analysis of Internal Computer Sorting”. J.ACM 7, 4 (Oct. 1960), 389-

409. 

[9] Flores, I.”Analysis of Internal Computer Sorting”. J.ACM 8, (Jan. 1961), 41-80. 

[10] ANDERSSON, A. and NILSSON, S. 1994. “A New Efficient Radix Sort”. In 

Proceeding of the 35
th

 Annual IEEE Symposium on Foundation of Computer 

Science (1994),pp. 714-721. 

[11] DAVIS, I.J. 1992. “A Fast Radix Sort”. The computer journal 35, 6, 636-642. 

[12] V.Estivill-Castro and D.Wood.“A Survey of Adaptive Sorting Algorithms”, 

Computing Surveys, 24:441–476, 1992. 



47 
 

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.”Introduction to    

Algorithms”. MIT Press, Cambridge, MA, 2nd edition, 2001. 

[14] D. Jim´enez-Gonz´alez, J. Navarro, and J. Larriba-Pey. CC-Radix: “A Cache 

Conscious Sorting Based on Radix Sort”. In Euromicro Conference on Parallel 

Distributed and Network based Processing, pages101–108, February 2003. 

[15] A.Aggarwal and J. S. Vitter.”The Input/Output Complexity of Sorting And 

Related Problems”. Communications of the ACM, 31(9):1116–1127, 1988. 

[16] R. W. Floyd. “Algorithm 245: Treesort3”. Communications of the ACM, 

7(12):701, 1964. 

[17] Aho, A.V., Hopcroft, J.E., Ullman, J. D., 1974.”The Design and Analysis of 

Computer Algorithms” Addison-Wesley. 

[18] MacLaren, M.D. “Internal Sorting By Radix Plus Sifting”. J. ACM 13, 3 (July 

1966), 404-- 411.  

[19] Williams, J.W.J. “Algorithm 232: Heap sort”. Comm. ACM 7, 6 (June 1964), 

347-348. 

[20] J. Larriba-Pey, D. Jim´enez-Gonz´alez,and J. Navarro. “An Analysis of 

Superscalar Sorting Algorithms on an R8000 processor”. In International 

Conference of the Chilean Computer Science Society pages 125–134, November 

1997. 

[21] A. Aho, J. Hopcroft, J. Ullman, “Data Structures and Algorithms”, Pearson India 

reprint, 2000 

[22] R. Motwani and P. Raghavan, “Randomized Algorithms”,Cambridge University 

Press, 2000 

[23] Aditya Dev Mishra, Deepak Garg “Selection of Best Sorting Algorithm” 

International Journal of Intelligent Information Processing” Vol II Issue II 2008 

ISSN0.973-3892, p. 233-238.  

[24] Y. Han “Deterministic Sorting In O(nlog Log n) Time And Linear Space”, 

Proceedings of the thirty-fourth annual ACM symposium on Theory of 

computing, Montreal, Quebec, Canada, 2002, p.602-608.  



48 
 

[25] M. Thorup ,“Randomized Sorting in O (n log log n) Time and Linear Space Using 

Addition, Shift, and Bit-wise Boolean Operations”, Journal of Algorithms, 

Volume 42, Number 2, February 2002, p. 205-230. 

[26] Y. Han, M. Thorup, “Integer Sorting in O(n √(log log n) Time and Linear Space”,          

Proceedings of the 43rd Symposium on Foundations of Computer Science, 2002, 

p. 135-144. 

[27]  P. M. McIlroy, K. Bostic and M. D. McIlroy, “Engineering Radix Sort”, 

Computing Systems, 2004, p.224-230. 

 

                                                                                                                    



49 
 

ANNEXURE II 

LIST OF PUBLICATIONS 

 

[1] Aditya Dev Mishra, Deepak Garg “Selection of Best Sorting Algorithm” 

International Journal of Intelligent Information Processing” Vol II Issue II 2008 

ISSN0.973-3892, pp. 233-238.  

 


