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ABSTRACT 

 
 

In Recommender system we have similarity search as a key part for making efficient 

recommendations. Similarity search have always been a tough task in a high dimensional 

space. Locality Sensitive Hashing which is most suitable for extracting data in a high 

dimensional data (Multimedia data) has been most suitable for it. The Idea of locality 

sensitive hashing is that it decreases the high dimensional data to low dimensions using 

distance functions and then store this data using hash functions which ensures that distant 

data is placed much further. This technique has been extended to kernelized Locality 

sensitive hashing (KLSH). One limitation of regular LSH is they require vector 

representation of data explicitly. This limitation is addressed by kernel functions. Kernel 

functions are capable of capturing similarity between data points. KLSH is a 

breakthrough in content based systems. This method takes a kernel function, a high 

dimensional database for data inputs and size of hash functions to be built. These kernel 

functions that are being used may give different degree of result precision. Hence we try 

to combine these kernels with a bootstrap approach to give an optimal result precision.  

In this paper we present the related work that has been done in locality sensitive hashing 

and at the end we propose algorithms for data preprocessing and query evaluation. 
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Chapter 1 

Introduction 

 

At this modern age we have numerous of technologies for our services and what comes 

from them is a large amount of data. This data is usually media data, genomic, network, 

medical or astronomical data. From this data we try to figure out some useful 

information. Mostly by that we mean labeling of information. But labeling also becomes 

a tough job without any prior information (audio information, visual information) about 

the data. But suppose we have a subset of data already labeled then we can label rest of 

data by finding the most similar data among the already labeled data accordingly. 

Hence we compute the following problem called All – Pairs – Nearest – Neighbor 

problem: For a collection of objects already given to us,     is an unlabeled object and we 

find a labeled object   which is under some notion of similarity is most similar to   so we 

label it as the category of  . This might look as an over effort but there is a problem with 

the data mentioned above. It is that it keeps getting bigger and bigger and hence becomes 

vitally important to design an algorithm to process this data efficiently. So instead of 

solving the problem efficiently for polynomial time we try to find answers whatever we 

can get in linear time. In various previous years many methods have been proposed that 

uses approximation to overcome the running time bottleneck. It formulates the no. of 

result points present up to the distance of     where     is approximation factor. 

1.1 Definition of nearest neighbor problem 

We define the Nearest Neighbor problem as optimization problem:  

Out of all the solution points to an objective, find the point that minimizes our particular 

objective solution uncertainty (i.e. distance to query point).    – Near neighbors of   includes all the points that are present up to distance   from the 

query point  . We can simply check if the returned point as nearest neighbor point is a   
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  – Near neighbor point of the query. But calculating the other way i.e. checking among 

the   – Near neighbor points if particular is nearest point to the query is quiet ubiquitous.  

There is another issue related to the near neighbor problem which is best known as 

“Curse of Dimensionality”. Data points are   – dimensional where   can range up to 

hundreds or even thousand. We have a no. of solutions for low dimensional data point. 

Say when    , we can have sort all data points in the preprocessing stage and then 

executing query with binary search. So the solution takes      space         and query 

time. But what if   is of higher value i.e. higher dimensional data points. In that case 

none of the previously proposed methods are going to come handy. Example    – trees 

[1] is a well known data structure but it only supports up to          dimensional value. 

As a successor to    – trees several other data structures were proposed that supported 

multi – dimensional data including R – tree, R* - tree, X – tree, SS – tree, VP – tree, SR – 

tree, metric – trees [2]. All these solutions possess a complexity either space or query 

time exponential in  . All these algorithms are able to achieve little improvement over 

linear time algorithm that compare query with each data point in database [3]. This 

phenomenon is called “curse of dimensionality”. 

1.2 Recommendation System – A Near Neighbor Problem 

We have a various applications, domains that use the nearest neighbor approach. Such 

kind of an application is Recommendation system that uses the approximation theory of 

near neighbor concept. Recommendation system is an application but also serves as 

domain to various research topics as it includes and invites various concepts that are 

involved to give a better recommendation. 

Recommender System has been a domain of interest since first paper on collaborative 

filtering emerged in 1995[4]. It constitutes problem – rich research areas and huge no. of 

practical application that help users to deal with information overload and provide 

services for real-life application. Examples of such kind of application would include 

Amazon.com which recommends CDs, books, other items to the users [5], MovieLens [6] 

recommending movies to the users and AdaptiveInfo.com which is now known as 

VERSIFI [7] recommending news to the users according to their interest. 
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Recommendation system is mainly about the problem of estimating ratings of the items 

that have not been rated by the users which sounds similar to the nearest neighbor 

problem of labeling the unlabeled data with the help of already known data. The current 

generation of recommender system requires much more improvements to make 

recommendations methods more effective and applicable to much wider scope like 

recommending vacations, certain financial services or purchasing products while 

shopping for example “smart” [8]. We specify heuristics that define utility function for 

extrapolation from known to unknown by optimizing various performance criteria 

recommending N best items matching criteria [9]. 

1.3 Features of Recommender System 

1.3.1 Accuracy: 

Accuracy is related to the capacity to satisfy the user’s need of information and it may 

vary among users due to different context, preferences, goals, knowledge and background 

[10]. Hence a good recommender system is the one that provide the items that satisfy the 

information needs, in one word – they are “relevant” to the user. To achieve high 

accuracy we require high coverage of the available items [11].  

1.3.2 User Satisfaction: 

At first one might think that an accurate recommender system that recommends the most 

relevant items would also satisfy the user. However, many other factors also influence 

user satisfaction. One of a factor is serendipity. There may be a chance that even 

recommender system after being accurate it might not be satisfactory. For example user 

may have to wait for too long to receive recommendations or if the presentation is 

unappealing. Some systems want users to specify their interests manually. There are a 

few system that collect user’s interests automatically.  

1.3.3. Satisfaction of the Recommendation Provider: 

Typically for any system, it is assumed that providers of systems are satisfied when their 

users are satisfied. But one other interest of the provider is to make low cost system, 

where costs may refer to labor, disk storage, memory, CPU power, and traffic [12]. 

Hence a good recommender system is developed, operated, and maintained at a low cost. 

Other providers may want to generate a profit from the recommender system A news-
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website might suggest articles of longer length so as to keep their readers a longer time 

on their website [13]. 

To evaluate the performance of recommendation algorithms we check coverage and 

accuracy metrics of the algorithm. Coverage measures the percentage of items for which 

predictions can be made by recommender system. Accuracy can be either statistically or 

by decision-support. Statistical accuracy metrics mainly compare the actual ratings R in 

the User Item matrix with the estimated ratings and include various parameters like Mean 

Absolute Error (MAE), root mean squared error, and correlation between predictions and 

ratings. Decision-support measures determine the degree of relevance to which a 

recommender system can make predictions of items [14]. 

1.4 Classification of Recommender System 

Recommender systems are broadly classified in following categories: 

Collaborative recommendations 

Content – based recommendations 

1.4.1 Collaborative Filtering 

Collaboration based recommender system predicts the utility of items for a particular user 

based on the items previously rated by other users. There has been various collaborative 

recommender system developed. Grundy system [15] is considered to be first 

recommender system recommending books. It uses stereotypes for building user models 

from limited information. . GroupLens [16] [17]. Video Recommender and Ringo were 

the first systems to use collaborative filtering algorithms to automate prediction. 

We will not get into the details of collaborative system, but would limit it to a brief 

overview of how it works and its classification. 

Let the utility of item   for user   is denoted by       . It is estimated on the bases of 

utilities         assigned to item   by the users      who are “similar” to user  . For 

example, for recommending movies to user  , the collaborative recommender system will 

create set of user that are similar to user c by comparing their user profiles. The movies 

they liked the most would be recommended to user   [18], [14].  
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Collaborative recommender system can be grouped into two general classes [17]:  

1. Memory-based (or heuristic-based) and  

2. Model-based.  

Memory-based algorithms  

Memory-based algorithms predict rating of items on the bases of previously rated items 

by all the users i.e. is the aggregate of the ratings of   most similar users for the same 

item  . To measure distance there are various similarity functions that can be used as a 

weight. The two most popular approaches to calculate similarity are correlation and 

cosine-based approach. In this paper we would use Euclidean distance. 

In Cosine-based approach, the two users   and   are treated as two vectors. The 

similarity between two vectors is the cosine of the angle between them [14]. The same 

correlation-based and cosine based techniques can be used to compute similarities 

between items and obtain the ratings from them.  

Model-based algorithms  

In Model – based algorithm, with the help of collection of ratings we learn a model for 

making rating predictions. We use probabilistic approach to collaborative filtering [17]. 

Rating values are integers between   and  . We can calculate the probability that user   

will rate item   to a particular value given all ratings of different items rated by user   

with some expressions [17]. 

In some applications, model-based methods might excel over memory-based approaches 

when we talk about accuracy of recommendations. As model-based techniques does not 

calculate utility (rating) predictions according to some heuristic rules, but it calculates 

according to a model learned from the underlying data by using statistical and machine 

learning techniques. There are certain theories that support argument that method 

combining both memory-based and model-based approaches can provide better 

recommendations. 

1.4.2 Content Based Approach  

This approach to recommendations has its roots in information retrieval [19], [17] and 

information filtering [20] research. Our topic, Locality Sensitive Hashing is part of 

information filtering, but we would focus on it later in our work. These systems are 
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mostly used for recommending items with textual information. Fab system [19], Syskill 

and Webert system [15] recommend pages with important words. These systems are used 

for organizational purposes for eg. Educational institutes recommending papers.  

There are various techniques involved in a content based recommender system. Finding 

and specifying keywords weights in information retrieval technique is mostly done by TF 

IDF measure [17]. 

We give a little demonstration of content based approach to show what it is about. Let if     be the weight of     keyword in document   , then content of    document could be 

defined as        (  )               . Where   is the total no. of keywords in 

document   . 

All the items that are previously rated by the user are compared with the candidate items 

that could be recommended and the items that match the best are usually recommended. 

If say content based systems recommend on the basis of user profile defined as                           which is created by analyzing                of those 

items usually seen and rated by a user. It contains tastes and preferences of that particular 

user. 

Let us say for a user  ,                        contains              . 
Where     denotes importance of     word to user  . Profile can be computed by Rocchio 

algorithm [16], giving an “average” vector from an individual content vectors [19], [17]. 

And in case of documents probability of liked by the user or not can be found using 

Bayesian classifier [15] or Winnow algorithm [21] but latter works well with large 

feature set of documents [22]. 

Both of these functions when compounded provide us our basic output function           which is termed as utility function which is basically a score function defined 

as:                (                                    )  
This scoring function is usually defined for information retrieval method in heuristic 

measure like cosine similarity [17]. Bayesian classifier also can be used for content based 
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recommendation with some other machine learning techniques like clustering, artificial 

neural networks, decision trees [15] etc. These learning techniques use underlying data to 

learn a model and use that model to calculate utility prediction and not some heuristic 

function. All these recommendation techniques in content based recommender systems 

mostly are related to text retrieval. Example, adaptive filtering [23] observes documents 

one by one in a continuous document stream to identify relevant documents more 

accurately and threshold setting for a query to find the relevant document for a user it 

decides the extent up to which a query should be matched. 

As stated earlier Recommender system comprises of various research fields hence there is 

wide scope of future work in almost every field. For example for comprehensive 

understanding of users and items, we need to adopt some advanced profiling techniques 

[14]. An important field is multi – dimensionality of recommendations. This will be the 

domain in which we will be interested in the further discussion as we introduce topic of 

locality sensitive hashing. Most of the recommendation examples Operates in the two-

dimensions like            space. There is always a chance of some crucial contextual 

information for most of the applications that are not taken into consideration. SAY, the 

utility of a various products for a user may depend significantly on time (e.g., the time of 

the year, season or month, or the day of the week). In such cases we can define the utility 

(or ratings) function for users over a multidimensional space                  
[14]. 

As we discussed the text retrieval techniques are most vocal in content based information 

retrieval based on which recommendations are mostly done. This information retrieval 

procedure has now become more prominent in image processing in the past decade. 

There are various methods proposed to extract information from images which are 

usually termed as ‘features’ and recommend or search similar images based on those 

features which require some processing. Now these features of images that are extracted 

as a part of information retrieval are usually found to be high dimensional (in hundreds) 

and processing of this high dimensional data in database that contains millions or billions 

of images does not come really very handy. A lot of techniques like    – trees, metric – 

trees that have been discussed before were tried on this data too but they all were a 
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disaster mostly because of the “Curse of Dimensionality” phenomenon. So a newer 

technique was introduced in 98 called “Locality sensitive hashing” by P.Indyk et.al.[24]. 

It has become important to address these images due to the fact that they are high 

dimensional and their size is almost in billions and is increasing at a faster rate. Hence 

labeling all these images has become necessary.  

Locality sensitive hashing (LSH) technique tackles this problem with ease. LSH has also 

been used in various other domains due to its tremendous results, high level performance 

and compatibility with dimensionality. Various extensions of LSH have been introduced 

in the past decade. These extensions can be grouped into two groups based the method of 

how they implement LSH technique. First is linear projection method and second is 

kernel based method. We describe both methods here but our focus will be on kernel 

based method in the further discussion.  

Linear projection method implement a family of locality sensitive hashing functions 

which map same/similar objects no nearby buckets with high probability and dissimilar 

products to farther buckets with high probability. Hence probability is the greatest factor 

in finding similar objects. LSH obtains a query time of  ቀ    ቁ in worst case. LSH is 

able to achieve a query time of  ቀ      ቁ  after improvising the technique [25]. Its 

performance can be improved by tweaking the I/O disk access by the use of   – trees 

[26]. We can also reduce space requirement of LSH by introducing multi probe LSH 

method [27]. LSH also encouraged an idea of compact binary codes to which many 

studies are focused on [28]. Many other issues are being addressed by different works 

that are related to LSH which include the issues related to Hamming distance [24], 

normalized partial matching, lp norms, learned Mahalanobis metrics.  

The regular LSH has some limitations with it that it assumes the data that is being 

processed come from multidimensional vector space and their underlying embeddings are 

also known and computable. Hence we require a framework that processes the underlying 

embeddings of data implicitly by exploring the similarity/kernel function. This 

framework is provided by kernel based methods particularly known as Kernel based LSH 

[29]. A variant of KLSH is proposed in which the hamming distance between the two 
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vector’s binary codes is strongly related to the shift invariant kernel [30]. KLSH 

technique is speeded up by introducing an algorithm for learning binary codes with 

kernels [31]. But most of the techniques used only a single kernel for kernel based 

hashing methods [29] ,[30] ,[31],. Several attempts have been made to produce a multi 

kernel hashing methods but they were not able to explore the true potential. The problem 

with single kernel is that they explore only a single feature set, but what if the data 

involves a large amount of features to describe itself. Similar is the case of images. There 

is a large no. of feature extraction techniques available for images and can be analyzed 

using various similarity functions. So they require to be accessed and analyzed using 

most of the feature set [33], [32] and for that we require to implement multiple kernel 

function. Now the question that comes is how to configure multiple kernel function.  

For this two algorithms are proposed one is weighted multi kernel LSH that calculated 

weight of each kernel and dedicated the hashing bits accordingly and the other one is 

boosting multi kernel LSH that used boosting learning technique to learn the bits 

allocation of each kernel [35]. BMKLSH introduced the concept of boosting rounds for 

learning of the bit size of each kernel. The optimization is done according to the 

following problem: 

                ∑   (∑       
   )  

               ∑       
To this end we propose our novel multi kernel LSH method that uses a refined learning 

technique of bootstrap sequential projection. Bootstrap learning algorithm performs 

regularized learning based hashing [34]. Learning technique is used which corrects the 

error effectively from holistically learned bits in previous projections with no 

computational overhead. 
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Chapter 2  

Literature Review 

 

Piotr Indyk et. al. [24] first introduced locality sensitive hashing in 1998. He introduced 

for {0,1}
d
 Hamming metric space of dimension d defined as  

                                                                    (1) 

Let         be a metric space defined where      . If     contains n data 

points i.e. (p1,p2,……………pn). Then distance of any point p to the rest of the set could 

represented as 

                                                                      (2) 

Where d(p, q) is Euclidian distance. Diameter of set P is 

                                                                       (3) 

A ball of similarity measure D is a set that contains all those points that are similar to a 

particular point say q. It is represented as 

                                                                      (4) 

A family of hash function is defined as 

                                                                     (5) 

The hash function family is said to be               - sensitive for D if for any          

If                   [         ]     

If                   [          ]      
Where                                                                 
And    [         ]           i.e. is a probability based similarity estimation 

technique. The complexity for this technique for  -approximate result is   
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 (        ⁄ ) space and  (   ⁄ ) hash function evaluation for each query and      

operations for evaluating hash function. 

Venu satuluri et.al. [39] In their paper mentioned two phases to a similarity search 

algorithms i.e. candidate generations phase and candidate verification phase. They have 

also developed two algorithms bayes LSH and bayes LSH- Lite. Bayes LSH performs 

both candidate searching and similarity estimation, while Bayes LSH- Lite only performs 

candidate searching and computes the similarities of unpruned candidates exactly. The 

algorithm Bayes LSH returns pairs of objects with similarity estimation where as Bayes 

LSH - lite returns objects that are exactly similar. 

Classical similarity estimation: If we compare n hashes and have observe   agreements 

in hash values, the maximum likelihood estimator for the similarity is:  ̂      
But there were certain limitations with this approach like, difficulty of tuning no. of 

hashes. To get the same level of accuracy for different similarities, we will need to use 

different number of hashes. It could be easily done but we don’t know the true similarity 

of each pair. 

Paper also uses different similarity measures like jaccard similarity and cosine similarity 

for bayes LSH. 

Junhao Gan et. al. [40] gave another variant of LSH which based on Currently, the 

primary choice of constructing an LSH function for Euclidean distance is to project data 

objects (represented as vectors ⃗      ) along a randomly chosen line (identified by a 

random vector ⃗) that is segmented into equi-width intervals of size w, and then project 

data objects to the same interval which are termed as “colliding” in the hashing scheme, 

for this we take each interval as a bucket. 

LSH function is of form   ⃗⃗      ቔ ⃗⃗  ⃗⃗   ቕ  where b is real no. chosen from [   ] 
uniformly. 
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Exact Euclidean LSH (E2LSH) exploits LSH as : a set of   LSH functions              are randomly chosen from LSH family (defined by equation 5) then 

they are joined together to form a compound hash function  

                               for any object  .      is used to hash all data objects into hash table  . We use a compound function for 

hashing because it reduces the probability of collision of two “distant” data object. 

It is difficult to design good compound hash function which would drop every pair of 

“close” objects in the same bucket for at least one hash table. Hence several hundred 

several hundred of compound hash functions and hash tables are needed in the E2LSH 

method to guarantee good search accuracy. 

Another LSH defined is Collision Counting LSH (C2LSH). It chooses a set of   LSH 

functions with appropriately small interval size             and form a function base, 

denoted as             . Intuitively, if a data object   is close to a query object  , 

then the two objects are very likely to collide under every single LSH function in  . 

Accordingly,   should collide with   under a large number of LSH functions. 

C2LSH exploits only a single base   of   LSH functions               , where 

each    is randomly selected from an              -sensitive LSH family. Here   is the 

base cardinality of  .      builds a hash table    by hashing each data object   in the 

database   with     to an integer. Each hash table    is surely a sorted list of buckets, 

and each bucket contains a set of object IDs of the objects that will fall in the bucket. 

When a query   arrives, first locate bucket in which query   will fall.  

Compute       for          and find union of data objects colliding with  , for 

every data object         we can compute              . 

                                     
Identify set   of all frequent objects. If   has less than    objects, (  is the cardinality of 

the database and   is allowable percentage of false positives) we have to compute 

distance of each object of  , otherwise compute distance of first    objects. 
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Bahman Bahmani et. al. [41] gives another enhancement to LSH distributed locality 

sensitive hashing. Two main instances of distributed frameworks are batched processing 

system MAP REDUCE [61] and real time processing system active distributed hash 

tables (Active DHT). Set   of   data points arriving as batch or real time.  

Parameters   is the no. of hash function in a hash set   taken from hash family as defined 

in eq (5).   is the max no. of hash table that can be used.   is the max no. of bits of hash 

function.      and        are the hash function families. 

If a machine processes a (key, value) pair and let   be randomly chosen hash function     for any data point     a (key, value) pair          is generated.  

For each query point  , they generate the offsets             , for each of them a 

(Key, Value) pair              is generated. Then, for any received query point  , the 

machine with id          retrieves all data points  , if any, with                

which are within distance of    from  .  

But the new idea is to use another layer of locality sensitive hashing to distribute the data 

and query points over the machines. More specifically, for a parameter value    , they 

sample an LSH function        .      ቔ      ቕ  where           is chosen 

uniformly from[   ]  
Then from        they generate (key, value) pair  (    )         . Then add   to a 

bucket      for each query point    , for each unique value   in the set                  
We generate a (Key, Value) pair       Then, all the data points   will be on machine   

such that         as well as the queries     one of whose offsets gets mapped to   

by     . 

Narayan Sunderam et al [42] has given a most popular and widely implemented 

application of LSH., but to make PLSH work well there were few algorithmic and 

technical contributions required to make. 

1. Both hash table construction and searching in it are distributed across multiple cores 

and multiple nodes in PLSH. 



14 

 

2. Within a single node, multiple cores will access concurrently the same set of hash 

tables. For this techniques to batch and rearrange accesses to data are developed to 

maximize cache locality and improve throughput. 

3. They also develop a novel cache-efficient variant of the LSH hashing algorithm, which 

improves index construction time. We try to minimize cache miss effects by performing 

software pre fetching. 

4. They propose a new hybrid approach that buffers inserts in an insert optimized LSH 

delta table and merge these into our main LSH structure periodically, to handle streaming 

arrival and expiration of old documents,. 

5. To accurately project the performance of single- and multi-node LSH algorithms to 

within 25% of obtained performance they developed a detailed analytical model.  

System consists of multiple nodes, each node store a portion of the original data in-

memory for processing speed. Hence memory size determines the total capacity of a 

node. Coordinator broadcast queries from different clients to all nodes, with each node 

querying its data. Responses from each structure are concatenated by the coordinator 

node and sent back to the user 

Two main steps in LSH table construction 

(1) Hash functions are applied on every data point to generate the k-bit indices into each 

of the L hash tables.  

(2) Insert each data point into all L hash tables. 

Each hash function is the dot-product between randomly generated hyper plane in the 

high-dimensional vocabulary space and the sparse term vector representing the tweet.  

To construct a hash tables are required to consist of contiguous arrays with exactly 

enough space to store all of the records that hash to (collide in) each bucket, and it is to 

be stored in memory and in parallel in a way that maximizes cache locality. 

Process of insertion into the hash tables can be viewed as a partitioning operation. This 

involves three main steps:  
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(1) Generate a histogram of entries by scanning each element of the table and in the 

various hash buckets;  

(2) Obtain the starting offsets for each bucket in the final table by perform a cumulative 

sum of this histogram  

(3) Re compute the histogram and perform an additional scan of the data, this time adding 

it to the starting offsets to get the final offset for each data item. 

This computation needs to be performed for each of the L hash tables. 

Hao Xia et. al. [35] has provided another extension of LSH with kernel function over a 

large collection of image database. They have discussed every implementation of LSH 

using Kernel function. It includes scalable image retrieval based on Locality Sensitive 

Hashing using Single Kernel, using multiple kernels and at the end they proposed a 

boosting algorithm for multi- kernel implementation of LSH. 

The kernel function used by them is defined as 

                               

Where        is a distance function, for the sake of simplicity they have considered 

Euclidean distance. In the experimental setup they have used a sequence of 9 kernel 

functions. 

The various multi kernel algorithms proposed combine the result of separate single kernel 

function. This approach fails to fully explore the power of multi kernel and most of all 

this technique is completely unsupervised. The boosting approach followed provides the 

optimal combination of multiple kernels. 

To find the optimal allocation of bit sizes  

If    is the no. of bits allocated to     kernel are: 

                ∑   (∑       
   )  

               ∑       
 

(6) 
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This is a NP hard problem where        is the average precision performance of applying 

the     kernel. After each round of kernel algorithm, best kernel with largest weighed 

Average precision performance       over the current distribution    is: 

     ∑             
     

R. Zhang et al. [43] proposed a non linear non stationary multiple kernels combination 

algorithm E2LSH –MKL. Exact Euclidean LSH- MKL extends the Group Sensitive –

MKL by using E2LSH method for clustering instead of K-means method for clustering. 

Multi – kernel learning (MKL) tries to describe the complex data. The conventional 

method tries it by applying linear and stationary kernel combination format. E2LSH 

method makes clusters and partition image into different clusters. E2LSH based multiple 

kernel learning classifier is trained on these clusters and assigns different weights to 

different clusters. Hence captures intra class diversity of images effectively. A function 

set of k – LSH functions defined as:           where                       
for each       derives a k – dimensional vector  . Then primary and secondary hash 

functions are used to produce a hash table saving data points. On this data E2LSH 

performs feature point clustering. E2LSH also supports dynamic expansion of features. It 

uses the hadamard product to produce nonlinear combination of multiple kernels.  

 (     )  ∑           (  )                 
    

  (     )  {                                            

M is no. of base kernels and        is the hadamard product of             .        Represent the     kernel weight that is derived by statistical property of data 

group      . This weighting function is termed as: 

                      ∑                             

Where         represents statistical property of       group over     kernel function. 
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Guangtao Xue et. al. [44] proposed a scheme to construct structured overlay network by 

using LSH scheme. This mechanism is termed as TSO and the network is a two layer 

topology aware network. TSO clustered the physical nodes into P2P ring at local level. 

This ring is regarded as the virtual node when we take the overall P2P overlay network as 

the high level chord ring. It reduces the overhead. The LSH used in TSO reduces the 

mismatching problem. The paper simulates the network to find the results in comparison 

of the traditional structured overlay. 

Joly et. al.[45] proposed an indexing technique used for approximate similarity search 

called multi probe LSH which probes multiple buckets of hash table. They define 

posteriori model that takes into account info of queries and objects that are returned 

which results in controlled search and probable buckets are selected more accurately. 

They proved that posteriori technique is better multi probe LSH Technique in terms of 

quality control. Contextual and personalized knowledge can also be adapted as prior 

information to the algorithm which focuses the retrieval on context aware objects making 

search more efficient. 

M.datar et. al. [46] also proposed scheme for approximate nearest neighbor problem 

based on LSH using p- stable distribution. They have proved that the algorithm can find 

exact nearest neighbor in         for data that satisfies certain bounded growth 

condition. Due to the LSH scheme the resulting time bound of the query is free of large 

factors and is 40 times faster than    trees. The algorithm is generalized to arbitrary    norm for   [   ]. LSH solves the decision version of the NN problem. The same 

can be done with    trees but that would require complexity reduction overhead which 

increases the running time. We can use approximation parameter   to match the LSH 

result but it returns the results with very guarantee on the reality. 

Charikar et. al. [47] uses the fact that LSH scheme leads to compact representation of 

objects hence estimating similarity between them from these compact sketches. The 

paper showed the rounding algorithms used in context of approximation algorithm can be 

done with LSH scheme for LP’s and SDP’s by finding alternatives to minwise 

independent permutation for estimation of set similarity and also estimate similarity 

between two vectors. And they also created scheme for n points distribution on metric 
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space, with distance is measured by Earth Mover Distance. It map distributions to metric 

space such that for distribution   and                 [ (         )]                          

Haghani et. al. [48] maps multidimensional buckets of LSH to linearly ordered set of 

peers that derive requirements for search results of good quality and for limiting network 

access and maintaining indexed data jointly. They proposed two mapping techniques 

such that buckets storing similar values are present nearby and they possess load 

balancing due to predictable output distribution. These are robust and scalable solutions 

that create index using proposed mapping and algorithms that find K nearest neighbor 

and range queries. 

Dasgupta et. al. [49] proposed a speed up method of Euclidean Locality sensitive 

hashing by using randomized hadamard transform in nonlinear nonlinear setting. If L is 

no. of hash functions are used k is the no of bits in d – dimensions they proposed a 

method reduce the complexity of LSH from O(dkL) to O(d log d +kL). They introduced 

two new algorithms named ACHash and DHHash. ACHash is a modification of the fast 

Johnson–Lindenstrauss transform (FJLT) which obtain hash buckets by using rounding 

and thresholding steps. DHHash has two applications of Hadamard transform with 

collision probabilities as that of LSH. They have also shown results with the help of an 

analysis method performed over 4 large datasets with 20% query time improvement. 

Boyi Xie et. al. [50] proposed a scheme for Semi Supervised agglomerative clustering. 

They calculated Hamming distance between hashed value of Kernelized Locality 

sensitive Hashing (KLSH) which decreases the computation time. They have used 

distance metric learning to get competitive precision and recall comparing to get k means. 

KLSH preserves neighborhood and provides a reasonable substitutes for exact inter 

instance distances with high probability and improves precision and recall. 

Jeremy Buhler et. al. [51] introduced a new algorithm LSH – ALL – PAIRS it finds 

non-gapped local alignments in genomic sequence. Genomic DNA sequences are 

essentially compared to find conserved genome features. The algorithm uses randomized 

search technique of LSH which makes it sensitive and efficient in finding local 
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similarities as little as 63% identities in mammalian genomic sequences. However the 

algorithm guarantees to find only pairs that match exactly while the missed pairs are 

controlled by increasing the iteration. Theoretically the number of comparisons to be 

performed can be up to        where   is the no. of hash functions. Practically for 

sequence comparisons combination of   and   is taken where   is the total no. of features. 

Tanmoy Mondal et. al. [52] proposed a fast word retrieval technique which deals with 

heterogeneous document image collection. Gabor features of the word image are 

extracted which are used for generating hash table for fast retrieval of similar image from 

large dataset. Algorithm provides a sub linear time similarity search for a wide class of 

similarity functions. KLSH focused on unknown kernelized visual data and require no 

assumptions on input or data distribution. They were able to retrieve 50% of the relevant 

words when only 20% of the words were accessed. 

Alexandr Andoni et. al. [53] were able to crank up a notch regarding LSH by 

introducing a new data structure for c approximate nearest neighbor problem for    they 

were able to achieve a query time              and space complexity of                 where         ቀ    ቁ       . This data structure surpasses the lower bound 

complexity of LSH. The idea that was used in this approach was to hash points so that 

collision probability of points that are closer to each other becomes much higher than for 

those which are far apart. Query results are retrieved from the bucket on which the query 

point falls. 

Wang, Shuhui, et al. [36] Due to the fact of SSL semi supervised learning not being able 

to incorporate multiple information sources and is not suitable for learning on real world 

dataset due to heavy computation and uncontrolled unlabeled data caused because of no 

sample selection on unlabeled data. So they proposed a method that imposed LASSO 

regularization on the kernel coefficients for avoiding over fitting and conditional 

expectations called scalable semi supervised multiple kernel learning (S
3 

MKL). For 

reducing risk of unlabeled data, they used multi – kernel locality sensitive hashing 

(MKLSH). Hence a combination of S
3
 MKL and MKLSH was presented by them. They 

were able to prove that this method is suitable for annotation of image and personalized 

re-ranking.   
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Hu Xin et. al. [54] explored the contemporary nature of static and dynamic clustering 

and used clustering ensemble concept to propose DUET method. It improved existing 

ensemble algorithm to reconcile differences between base malware and clustering by 

incorporating cluster quality measure. They improved scalability of behavior based 

clustering by adopting LSH. DUET method unifies static and dynamic clustering results 

systematically by building a framework. They proved that DUET improved coverage by 

20 – 40% with highest precision of the two algorithms. 

V.Tomar et.al. [55] Based on manifold learning based technique that are used for feature 

space transformation and semi supervised learning they proposed an approach to conquer 

the immense computational requirements of this technique. They applied LSH technique 

to this method that uses cosine correlation based distance measure. Due to LSH they are 

able to achieve complexity reduced by a factor of 9 without affecting speech recognition 

performance. In the paper they populated the affinity matrices in space transformation by 

using a fast LSH algorithm. They have used Correlation preserving discriminant analysis 

CDPA that utilizes cosine based distance measure for characterizing domain relationships 

against feature vectors. Hence they used E2LSH for hashing. They implemented LSH 

within CDPA framework to achieve computational gains without affecting ASR 

performance.  

Debing Zhang et. al. [56] tried to focus on Nearest neighbor problem and its importance 

and the solution that are generally provided to fix it is creating a data structure like    -

tree, k means trees. This paper also proposes a method that combines the advantages of 

both hashing method’s fast computation and an effective data structure. This method 

easily accelerates the searching procedure. It takes hierarchical k means tree and extend 

its each node into a structure which contains accurate representations and approximate 

representations in hamming space. Hence it approximated and accelerated the traditional 

search strategy by introducing the hamming space computation. It is liable to consume      time complexity in modern CPU architecture. 

Kristen Grauman et. al. [57] in hashing algorithms we try to learn the binary 

projections of the data that is hashed. This binary projection is a powerful tool to index 

large collection according to their content. And we can search data efficiently using hash 
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tables. They proposed several supervised and unsupervised techniques to generate binary 

code. Based on spectral analysis and kernelized random projections they try to integrate 

boosting, metric learning and neural networks into hash key construction. These methods 

make scalable retrieval for variety of robust similarity measures. These methods were 

able to provide crucial scalability for usual search problems. The diversity of approaching 

wide range techniques makes this procedure very much popular. 

Yadong Mu et .al. [58] discussed about, usually locality sensitive hashing support metric 

data but human perception compares reasonably with non – metric distances, so 

considering this theory they proposed LSH technique that support non metric data. They 

embed data into an implicit kernel Krein space and then hashed to obtain binary bits and 

to ensure collision probability reflects the non – metric distance of feature space they 

used norm keeping property of p – stable function. The symmetric non – metric distances 

are efficiently interpreted by Krein space theory. It captures information contained in 

negative singular values by deriving two step LSH function. 

Maxim Raginsk et. al. [59] talks about the problem of matching binary codes of vectors 

that are similar in original space map. For this they introduced simple distribution free, 

random projection based encoding scheme that relates the hamming distance between 

binary code two vectors with the value of shift invariant kernels between the vectors. 

This method makes kernel bandwidth a free parameter, hence providing flexibility to 

adapt to target neighborhood size. This makes sure that a fraction of neighbors are 

mapped to the strings for each query. This strategy increases recall for low hamming 

radius but sacrifice some precision. 

Junfeng He et. al. [60] focuses on large scale data of general formats with any kernel 

function and develop a new hashing algorithm to create codes for it. These kernel 

functions can be on graphs, sequences, vectors, sets and so on and can be explicitly 

represented and optimized and applied to compute hash codes for general format 

samples. They made algorithm scalable to huge data and reduce time and space 

complexity for indexing and searching by incorporating efficient techniques. This method 

handles diverse types of similarities (including both feature similarity and semantic 

similarity), so can be varied according to the task requirement. This paper creates 
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compact hash codes which can be scaled to huge dataset even consisting samples in 

millions and that for general type of data for any kernel.  

Chenxia Wu et. al. [34] studied under the regularized learning based hashing framework 

about the semi supervised hashing methods. To capture the relationship among the data 

points they introduced non – linear hash function which makes the dimensionality of 

matrix much smaller than the dimensionality of one that use linear hash function and at 

the same time make it independent of dimensionality of data space. In this paper they 

proposed bootstrap sequential projection learning method based semi supervised non – 

linear hashing algorithm that deals with the error accumulated while converting the real 

value embeddings into binary code by correcting them holistically without any extra 

computational overhead. It takes into account all the previously learned bits. They 

retained the projection vector through various iterations as the process of learning with 

the help of regression matrix that was created with the help of anchors. These anchors are 

the centers of clusters. Bootstrap learning method is liable to achieve best performance in 

comparison to other learning methods. 
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Chapter 3  

Problem Statement 

 

In our work we try to find nearest neighbor in Euclidian distance with the help of kernel 

function for given dataset of images. The images we use to work on are in the form of 

extracted feature which is performed using different feature set. 

We define nearest neighbor problem as 

 “given a set P of n points in a d-dimensional space, build a data structure that, 

given a query point q, reports any point within a given distance r to the query (if one 

exists).” 

In Content based systems (such as recommender system) similarity search plays an 

important role, as recommender system is all about providing items similar to the users 

taste. For this a variety of data structures have been proposed for indexing and searching 

data points in a low dimensional space, but these algorithms becomes less effective in 

high dimensional space due to their space and time complexity which grows 

exponentially. This phenomenon is known as “Curse of Dimensionality”. To tackle this 

problem recent studies focus on approximate approaches that try to remove high 

dimensional problem. We try to find data points that are at distance         from 

query. As mentioned earlier it is a good practice to specify items with high 

dimensionality to provide a good recommendation to users. Hence a well known and 

recent technique called locality sensitive hashing is applied to many applications. It was 

first proposed by Indyk et.al. for binary hamming space        then it was extended for 

use in Euclidean space by Datar et.al. One limitation of regular LSH is they require 

vector representation of data explicitly. This limitation is addressed by kernel functions. 

Kernel functions are capable of capturing similarity between data points. These kernel 

functions are able to make a framework to process the underlying embeddings of data 

implicitly. This framework is provided by kernel based methods particularly known as 

Kernel based LSH In our work we first analyze the previously build kernel function 
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based locality sensitive hashing which is the building block of our research work. Then 

we create multiple kernels from the same dataset and try to combine them with equal 

weights treating each kernel equally. As this approach is naïve, so we implement a 

learning method that iteratively learn the best combination for kernel functions. Then 

finally we will use that multi kernel combination to create hash codes for the data and 

store them in a hash table and then for each query that arrives we compute the hash code 

for each query and fetch the results from the hash table. 

So our problem statement could be stated as: 

To create a searching technique for high dimensional data (images) on the basis of 

similarity by using multiple kernel functions and combining them efficiently by learning 

the best weight of each kernel function. 
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Chapter 4 

Bootstrap and Kernel Based LSH 

 

4.1 Analysis of Kernelized Locality Sensitive Hashing  

KLSH is the basic algorithm that synthesizes large multi kernel algorithms. It works with 

high dimensional dataset very easily and uses a kernel function to create a kernel matrix 

from the given data. From this kernel matrix we obtain the hash keys for a particular 

given length. To explain this procedure verbosely we introduce certain technical terms 

and notations mentioned in table 1. 

Symbols Meanings   Matrix of data points of size d x n, where d is dimensionality and n is no. of 

images.    subset of X containing r elements, r<n.             An RBF kernel function that defines similarity level between xi and xj.    Hash function for i
th

 bit.      feature set for input x. 

K Kernel matrix made from kernel function.   Total no. of hash bits.          Euclidian distance 

U vector containing cluster centers 

G vector of length m containing mAP of i
th 

kernel gi where i=1,2,……m   Standard deviation  

Z regression matrix 

W Eigen projection matrix  

H hamming matrix 

Table 1. Description of notations that are used 

Our data points are represented as a feature matrix. Let      be a      matrix 

containing features for n data points. The algorithm efficiently computes the kernel 
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matrix K from a kernel function            , for sampled data points that are taken from 

the original dataset X. Kernel function used is a Gaussian kernel function which is 

essentially designed to process high dimensional data. The details about this kernel 

function are explained in next section. The kernel matrix that has been produced acts as a 

similarity measure for high dimensional data points. Then LSH projects all the data 

points to hash key               which is a low dimensional binary space where b is 

the length of the hash keys. These hash keys are being produced using kernel matrix K. 

The procedure for creating hash keys is for a data value goes through certain processing. 

All the images (data value) i.e. the complete set X are picked up one by one through an 

iterative process. The KLSH function [29] first of all creates a set   , contains   random 

data points from the dataset of   data points.    subset of                . These   

data points are then applied on kernel function             to produce a kernel matrix K of 

normalized form where             .             calculates the inner product of       

and maps data points   , into a functional space. This             maps data point    
through a nonlinear feature mapping function     . This function satisfies the condition                         . 

After that it generates b random vectors relating to the subset    as {                    
where each random vector    where            is calculated as a vector containing   

random indices from range [   ]. 
Calculate vector             

. We will have    {              } for            Where       is calculated as svd of K. gives U, V, S matrices then replacing 

K=     and                Then calculate the hash function:               ∑           (     )  where           .  

When query      arrives to find s similar results or nearest neighbor, this query is also 

projected on b hash keys using above procedure and then using hash table we find s most 

approximate nearest neighbor. The details of this procedure are explained in algorithm 1. 

The trick for making a better implementation of KLSH is by making r  n i.e. the sample 

set is same as the original dataset. The matrix produced is of order n x n called the gram 

matrix. This would make the approximation exactly equal to the query. 
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Algorithm 1: Outlines the procedure of implementing KLSH  

Input: 

 A database with n images : {xi : i=1,2,……n} ,       

 Length of the hash key: b 

 A kernel function k( . , . ) 

Steps:  

Select r random data points p1={x1, x2,………, xr} 

Calculate distance matrix D as          (     )                 
Calculate standard deviation   as   √∑        

Calculate kernel matrix K as K=[   (     )]    

   Where                  (     )   ⁄   

For l=1,….b repeat  

 Form e
l
 by selecting t indices at random from [1,……,p] as                    

 Form w
l
 as =           where svd(K)=U.V.S and               . 

 i.e. w
l 
will be a vector of length p. 

 Construct hash function as    (    )      (∑     (    )    ). 

End for 

Hence the way to achieve high precision make r  n. but this would make the calculation 

more complex and hence increase the complexity. This implies a tradeoff has to be done 

between precision and complexity. So the value of r must be decided appropriately. The 

analysis of this algorithm has also been done by using various theorems [35] that show 

kernel similarity is well approximated by 
          the error decreases as the number of 

bits b increases. 

4.2 Multi kernel Locality Sensitive Hashing 

The kernel matrix that has been created by algorithm 1 using a particular feature set from 

r data samples is also created for other feature set on the same data samples. So in this 

way we have few no. kernel matrices and now we create the hashing bits for each data 

item using all these kernel matrices so as to include all variety of features in the bits. Let 

us say if we have m feature set, we will be able to create m kernel matrices according to 



28 

 

algorithm 1. We assign a few no. of hashing bits say    to each kernel matrices    where            and calculate the value of each bit by creating random vector     

where              and from each vector we create a weight vector    using the 

SVD of the     kernel matrices. 

Algorithm 2: MK-LSH 

Input: 

 A database with n images: {xi : i=1,2,……n} ,       

 Bit allocation vector [b1, b2,….., bn] 

 A set of m kernel function {kl |l=1, ………m} 

Steps: 

 r=0; 

 Select r random data points p1={x1, x2,………, xr} 

 For l=1,…….m 

  Calculate kernel matrix    as    [   (     )]    

  For r=1,….bl repeat  

   Form    by selecting t indices at random from [1,……,p] as                     
   Form    as =            where svd(  )=U.V.S and                  

    i.e.    
will be a vector of length p 

   Construct hash function as    (    )      (∑      (    )    ) 

  End for 

 End for 

Output: a set of b hash function                 
Afterwards we calculate the hashing bits of that particular data item using sign function. 

The details of this procedure are given in Algorithm 2 and figure 1. The total no. of bits   

is equal to the sum of all bits allocated to m kernel matrices i.e.   ∑       . The value    
that is chosen defines the configuration of the multiple kernels used.  

The values    learned from algorithm 3 are then applied on MK-LSH algorithm [36]. 
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4.3 Bootstrap sequential projection multi – kernel locality sensitive 

hashing 

There are various methods to combine multiple kernels as we discussed earlier. To make 

multiple kernel matrices, we use different feature sets to define input matrix X and apply 

RBF kernel functions. The different feature set used are mentioned in further section. We 

propose our technique for combining multiple kernels in a more efficient way. Bootstrap 

sequential projection multi – kernel locality sensitive hashing (BSPMKLSH). This 

algorithm creates a difference in the error condition as compared to the former boosting 

approach. BMKLSH judges all the previous bits [35] separately by using boosting 

technique [38]. But the latter judges all previous bits holistically i.e. error will occur with 

either positive pairs with large hamming distance or negative pairs with small hamming 

distance.    and    are threshold to determine ‘large’ and ‘small’ hamming distance 

after ‘k’ projections. Our objective is to learn the optimal allocation of bit size to the 

kernel function. 

4.3.1 Bootstrap sequential projection Learning 

A clustering method is firstly performed on the similarity distance of all inputs to obtain 

cluster centers:             

That act as anchors. Then the anchor graph defines the truncated similarities defined by 

Zij, between r anchors and n data points. 

    {         ቀ     ቁ  ∑         ቀ      ቁ                            

It forms a Z matrix that measures the underlying similarities between raw samples and 

their corresponding data points. Z(x) is x’s corresponding column of regression matrix Z. 

By introducing hash functions using anchors creates a non linear hashing function that 

derives a projection matrix W. A relaxation is introduced through removing binary 

constraints to the following objective function:                    
 

(7) 

(8) 

(9) 
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To maximize the information provided by each bit a regularizer is added.        

After applying the relaxation we can solve the projection problem by directly obtaining 

the eigen values of  

Q=           

Hence the error condition formulated as after k projections:    ∑                      
                

   ∑                      
                

We represent the error conditions with matrix H
k
 with data points:      ∑                           

In matrix form  

H
k
=∑                   

H
k
 can be calculated recursively as: 

H
k
=H

k-1
+               

S is a label matrix that defines the relationship between the elements xi,xj. In this case we 

use the similarity degree between these two elements as relationship. 

    {                                           
     represent a logical relationship of pair (xi,xj): 

     {     (     )           (     )                  

Error condition can be rewritten wrt                                               

The updating rule for S is              

(10) 

(11) 

(13) 

(12) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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    is increased weight matrix which is determined by: 

      {  
                                                                             

After extracting k
th

 projections from Q
k
 , to minimize redundancy in bits, Z is updated as              

Algorithm 3: BSPMKLSH 

Input: 

 mAP of all kernel functions from algorithm 1 in the form of vector G, 

 l = no. of projection iterations required, constant   

Initialize: 

             

Steps: 

 Calculate S
1 

using equation 17 

 Calculate Z using equation 8 

 For k=1,……l               

  Form e as eigen vectors of    set      

  H
k
=H

k-1
+               

  Calculate     according to equation 20                                    
 

               Form W={w1,w2,…..wl} 

 End For 

 Calculate    ∑     ∑ ∑           . 

Output:     

(20) 

(21) 
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We recursively calculate the update of ZZ
T
 to reduce computational effort. Since both C

k
 

and U
k
 are with the size of    , we can efficiently compute the residual. The detailed 

procedure is summarized in algorithm 3. 

Bootstrap learning scheme possess complexity in calculating eigen projection matrix of 

O(l.m
2
) for m kernel functions and l projection rounds. The cost of calculating hamming 

matrix is O(m
2
). The values of    learned from algorithm 3 are applied in algorithm 2. To 

ensure the effectiveness of this algorithm we perform experiment and compare its 

performance with the rest of the algorithms. The details of this experiment are discussed 

in next chapter. 
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Chapter 5 

Experiments 

 

5.1. Test Bed 

The dataset that we have used to examine our proposed algorithm, called Flickr [37] 

(known as MIRFLICKR-25000) has been widely used for scalable image retrieval in 

content based searching. This dataset contains 25,000 images maintained in groups, each 

having one query image. We implemented our algorithm in matlab language environment 

on a machine with configuration of 2gb ram intel i3 2.0 gHz processor. 

5.2 Experimental Setup 

We present our result in both complexity wise and in terms of percentage of data items 

searched with hashing function. We set parameter   to control the fractions of nearest 

neighbor to be linearly scanned using LSH. Next we calculate performance metric using 

mean average precision (mAP). Precision value is ratio of relevant examples over total 

retrieved examples. mAP is the mean of AP of all the queries. 

5.2.1 Image Feature extraction 

We use 5 different feature extraction methods that are commonly used for describing 

image. 

GABOR filter is a linear filter that is used for edge detection. They are appropriate for 

texture representation and orientation as their texture representation and discrimination is 

similar to that of humans. 

GIST features [62] provide a statistical summary of spatial envelop representation of the 

scene to find global image feature. 

Color histogram represents image’s color distribution in various color spaces. It 

provides a summary of how data is distributed in an image. 

Edge direction histogram converts 2D image into a set of curves and is more compact 

than pixels. The discontinuities of intensity function of an image are localized. 

Local binary pattern labels the pixels with binary number which is determined by 

threshold the neighborhood of each pixel. 
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5.2.2 Kernel function 

Each image is described by the above mentioned 5 features. Then we build kernel 

function for each of these 5 features. For this we adopt RBF kernel. This Gaussian kernel 

function is one kind of radial basis kernel function.                                     is the L2 distance. This function can also be written as:               ‖   ‖     

In this function   plays a significant role while evaluating performance and is tuned 

according to problem. It’s over estimated value will make look exponential as linear and 

non linear effect of high dimensional projection will be faded. Whereas the 

underestimated value will make function lack in regularization and noise in training data 

highly affects decision boundary. 

5.2.3 Experimental Procedure 

We firstly started with analyzing of single kernel based LSH and based on that we 

derived kernel matrix of random data set based on each feature set. The representation of 

such kind on kernel matrix is represented in Fig 1. 

Fig 1. Representation of a 58 x 58 kernel matrix based on single feature set 
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In the same manner we created a kernel matrix for each feature set and derived the mean 

Average Precision for each kernel function separately.  

Fig 2. GUI of Bootstrap Sequential Projection Multi kernel Locality Sensitive 

Hashing 

This Mean value precision is utilized to learn the hash bit size of each feature set based 

on our novel technique of bootstrap sequential projection learning. The GUI of our query 

processor is shown in fig 2.  

Fig 3. Query extraction and processing 
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This GUI takes the query as shown in fig 3 and processes it to find its hashing bits 

according to different kernel functions and evaluate the results. The learned values were 

then applied on multi kernel LSH algorithm to give efficient results as shown in fig 4. 

 

Fig 4. Results of the queries 

5.3 Algorithm comparison 

As learning approach has only been implemented in BMK-LSH and BSP-MK-LSH, so it 

would only be fair to compare only these two algorithms. We compare the two 

algorithms in table 2. l is the number of rounds of projection. 

Algorithm Learning Complexity Searching Complexity 

BMK-LSH         ⁄  m.d.b. 

 

BSP-MK-LSH         ⁄  m.d.b. 

 

Table 2. Algorithms complexity comparisons 
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5.4 Experimental Result   

We perform experiments in terms of top-n precision where n = 1; 2; 3; 4. We fix 

parameters as   = 0:1; b = 100; p = 100; l = 20; t = 30. Parameter   is basically used to 

show experimental result in the form of database items searched instead of measuring 

search time. It is not difficult to understand that with increasing   value more image 

examples will be fetched and inspected and also increases the calculations of kernel 

matrix but after a certain point retrieval of relevant images halt and only resistance is 

added. As mentioned earlier in section 3 values of b and p1 represents the hashing bit size 

and size of subset used for computing kernel matrix respectively which and when they 

are increased our average precision also increases. Also the values of b and p needs to be 

same which is clearly visible in the step 8 of algorithm 3 which carries the multiplication 

of matrices of size p1  p1 and b   1. The value of t indices represents the size of vector    which is not very sensitive to the algorithm though increasing t would not always 

increase performance it could also degrade the performance. Next is the value of l which 

represents the iteration rounds. Through our experiments we have found that l obtains a 

saturation value after which increasing l introduces no effect.  

 

Fig 5. mAP of n query for BSP MK LSH 
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The algorithm 2 uses a regularizer. The effect of adding a regularizer prevent over fitting 

of models/features by penalizing them with extreme parameter value. They fine tune the 

complexity of the model by using augmented error function with cross validation. The 

data sets used in complex models produces leveling-off of validation as complexity of the 

models increases. The training data set error decreases while validation data set error 

remain constant. A second factor introduced by regularizer weighs the penalty against 

more complex models with an increasing variance in data errors providing increasing 

penalty as complexity increases. As a result produces fine judgment of size of feature set 

used than produced from learning by boosting iterations. 

    

Algorithm mean std 

Simple- KLSH 0.16902          

MK-LSH 0.16761          

BMK-LSH 0.20460          

BSP-MK-LSH 0.21139          

Table 3. mAP and standard deviations of different algorithms 
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Chapter 6 

Conclusion and Future Scope 

 

Conclusion 

In our thesis we have worked on the basic block of kernel based LSH called Kernelized 

Locality Sensitive hashing. We analyze this procedure thoroughly and also implement a 

multi kernel based LSH which does the same work as KLSH but w.r.t. various feature 

data set. We have proposed a novel method of combining multiple kernels together by 

learning the optimal combination of the hashing bits. We have done a literature survey to 

find a good method of high dimensional feature analysis and were able to find a powerful 

method that combines the multi kernel by assigning them weight that are learned by a 

boosting technique. Then we introduced a learning algorithm, Bootstrap Sequential 

Projection that learns the optimal weight of bits for each kernel. Bootstrapping is 

successfully applied to the hashing bit size learning. This learning algorithm increases its 

efficiency with increasing number of kernel functions. We have conducted a thorough 

experiment to evaluate the performance of our proposed algorithm, which concludes this 

algorithm to be a better approach than boosting multi-kernel LSH. 

 

In Future work we will try to implement our techniques in other domains like e-

commerce, textual context etc. This procedure can also be used to learn the compact 

binary code representation of high dimensional data. Including more and more feature set 

would make it more versatile. We can also try to embed textual features of the text 

related to the images and increase its scope of information learning. 
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