
BOOTSTRAP SEQUENTIAL PROJECTION MULTI

KERNEL LOCALITY SENSITIVE HASHING

Thesis submitted in partial fulfillment of the requirements for the award of degree

of

Master of Engineering

in

Software Engineering

Submitted By

Harsham Mehta

(Roll No. 801231011)

Under the supervision of:

Dr. Deepak Garg

Associate Professor

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

THAPAR UNIVERSITY

PATIALA – 147004

July 2014

ii

ACKNOWLEDGEMENT

It is a great pleasure for me to acknowledge the guidance, assistance and help I have

received from my guide Dr. Deepak Garg, Head of Computer Science Department. I am

thankful for his continual support, encouragement, motivation and invaluable suggestions

that inspired me for the thesis work. He not only provided me help whenever needed, but

also the resources required to complete this thesis report on time.

I wish to express my gratitude to Dr. S. K. Mohapatra ,Senior Professor, Dean of

Academic Affairs for introducing me to my thesis topic and providing me an opportunity

to be a part of state of art research.

I also wish to express my gratitude to Dr. Damandeep Kaur, Software Engineering P.G.

Coordinator, Computer Science and Engineering Department, for cooperating and

inspiring me for research work.

I would also like to thank all the staff members of Computer Science and Engineering

Department for providing me all the facilities required for the completion of my thesis

work.

Most of all, I would like to thank my parents and friends for their inspiration and ever

encouraging moral support, which went a long way in successful completion of my

thesis.

Above all, I would like to thank the almighty God for his blessings and for driving me

with faith, hope and courage.

iii

ABSTRACT

In Recommender system we have similarity search as a key part for making efficient

recommendations. Similarity search have always been a tough task in a high dimensional

space. Locality Sensitive Hashing which is most suitable for extracting data in a high

dimensional data (Multimedia data) has been most suitable for it. The Idea of locality

sensitive hashing is that it decreases the high dimensional data to low dimensions using

distance functions and then store this data using hash functions which ensures that distant

data is placed much further. This technique has been extended to kernelized Locality

sensitive hashing (KLSH). One limitation of regular LSH is they require vector

representation of data explicitly. This limitation is addressed by kernel functions. Kernel

functions are capable of capturing similarity between data points. KLSH is a

breakthrough in content based systems. This method takes a kernel function, a high

dimensional database for data inputs and size of hash functions to be built. These kernel

functions that are being used may give different degree of result precision. Hence we try

to combine these kernels with a bootstrap approach to give an optimal result precision.

In this paper we present the related work that has been done in locality sensitive hashing

and at the end we propose algorithms for data preprocessing and query evaluation.

iv

Table of Contents

Certificate i

Acknowledgement ii

Abstract iii

Table of Content iv

List of Figures vi

List of Tables vii

Chapter 1

 Introduction 1

 1.1 Definition of nearest neighbor problem 1

 1.2 Recommendation System – A Near Neighbor Problem 2

 1.3 Features of Recommender System 3

 1.3.1 Accuracy 3

 1.3.2 User Satisfaction 3

 1.3.3. Satisfaction of the Recommendation Provider 3

 1.4 Classification of Recommender System 4

 1.4.1 Collaborative Filtering 4

 1.4.2 Content Based Approach 5

Chapter 2

 Literature Review 10

Chapter 3

 Problem Statement 23

Chapter 4

 Bootstrap and Kernel Based LSH 25

 4.1 Analysis of Kernelized Locality Sensitive Hashing 25

 4.2 Multi kernel Locality Sensitive Hashing 27

 4.3 Bootstrap Sequential Projection Multi – Kernel

Locality Sensitive Hashing 29

 4.3.1 Bootstrap sequential projection Learning 29

v

Chapter 5

 Experiment 33

 5.1. Test Bed 33

 5.2 Experimental Setup 33

 5.2.1 Image Feature extraction 33

 5.2.2 Kernel function 34

 5.2.3 Experimental Procedure 34

 5.3 Algorithm comparison 36

 5.4 Experimental Result 37

Chapter 6

 Conclusion and Future Scope 39

References 40

List of Publications 46

vi

List of Figures

Figure 1

 Representation of a 58 x 58 kernel matrix based on single feature set 34

Figure 2

 GUI of Bootstrap Sequential Projection Multi kernel

 Locality Sensitive Hashing. 35

Figure 3

 Query extraction and processing. 35

Figure 4

 Results of the queries 36

Figure 5

 mAP of n query for BSP MK LSH. 37

vii

List of Tables

Table 1

 Description of notations that are used 25

Table 2

 Algorithms complexity comparison. 36

Table 3

 mAP and standard deviations of different algorithms 38

1

Chapter 1

Introduction

At this modern age we have numerous of technologies for our services and what comes

from them is a large amount of data. This data is usually media data, genomic, network,

medical or astronomical data. From this data we try to figure out some useful

information. Mostly by that we mean labeling of information. But labeling also becomes

a tough job without any prior information (audio information, visual information) about

the data. But suppose we have a subset of data already labeled then we can label rest of

data by finding the most similar data among the already labeled data accordingly.

Hence we compute the following problem called All – Pairs – Nearest – Neighbor

problem: For a collection of objects already given to us, is an unlabeled object and we

find a labeled object which is under some notion of similarity is most similar to so we

label it as the category of . This might look as an over effort but there is a problem with

the data mentioned above. It is that it keeps getting bigger and bigger and hence becomes

vitally important to design an algorithm to process this data efficiently. So instead of

solving the problem efficiently for polynomial time we try to find answers whatever we

can get in linear time. In various previous years many methods have been proposed that

uses approximation to overcome the running time bottleneck. It formulates the no. of

result points present up to the distance of where is approximation factor.

1.1 Definition of nearest neighbor problem

We define the Nearest Neighbor problem as optimization problem:

Out of all the solution points to an objective, find the point that minimizes our particular

objective solution uncertainty (i.e. distance to query point). – Near neighbors of includes all the points that are present up to distance from the

query point . We can simply check if the returned point as nearest neighbor point is a

2

 – Near neighbor point of the query. But calculating the other way i.e. checking among

the – Near neighbor points if particular is nearest point to the query is quiet ubiquitous.

There is another issue related to the near neighbor problem which is best known as

“Curse of Dimensionality”. Data points are – dimensional where can range up to

hundreds or even thousand. We have a no. of solutions for low dimensional data point.

Say when , we can have sort all data points in the preprocessing stage and then

executing query with binary search. So the solution takes space and query

time. But what if is of higher value i.e. higher dimensional data points. In that case

none of the previously proposed methods are going to come handy. Example – trees

[1] is a well known data structure but it only supports up to dimensional value.

As a successor to – trees several other data structures were proposed that supported

multi – dimensional data including R – tree, R* - tree, X – tree, SS – tree, VP – tree, SR –

tree, metric – trees [2]. All these solutions possess a complexity either space or query

time exponential in . All these algorithms are able to achieve little improvement over

linear time algorithm that compare query with each data point in database [3]. This

phenomenon is called “curse of dimensionality”.

1.2 Recommendation System – A Near Neighbor Problem

We have a various applications, domains that use the nearest neighbor approach. Such

kind of an application is Recommendation system that uses the approximation theory of

near neighbor concept. Recommendation system is an application but also serves as

domain to various research topics as it includes and invites various concepts that are

involved to give a better recommendation.

Recommender System has been a domain of interest since first paper on collaborative

filtering emerged in 1995[4]. It constitutes problem – rich research areas and huge no. of

practical application that help users to deal with information overload and provide

services for real-life application. Examples of such kind of application would include

Amazon.com which recommends CDs, books, other items to the users [5], MovieLens [6]

recommending movies to the users and AdaptiveInfo.com which is now known as

VERSIFI [7] recommending news to the users according to their interest.

3

Recommendation system is mainly about the problem of estimating ratings of the items

that have not been rated by the users which sounds similar to the nearest neighbor

problem of labeling the unlabeled data with the help of already known data. The current

generation of recommender system requires much more improvements to make

recommendations methods more effective and applicable to much wider scope like

recommending vacations, certain financial services or purchasing products while

shopping for example “smart” [8]. We specify heuristics that define utility function for

extrapolation from known to unknown by optimizing various performance criteria

recommending N best items matching criteria [9].

1.3 Features of Recommender System

1.3.1 Accuracy:

Accuracy is related to the capacity to satisfy the user’s need of information and it may

vary among users due to different context, preferences, goals, knowledge and background

[10]. Hence a good recommender system is the one that provide the items that satisfy the

information needs, in one word – they are “relevant” to the user. To achieve high

accuracy we require high coverage of the available items [11].

1.3.2 User Satisfaction:

At first one might think that an accurate recommender system that recommends the most

relevant items would also satisfy the user. However, many other factors also influence

user satisfaction. One of a factor is serendipity. There may be a chance that even

recommender system after being accurate it might not be satisfactory. For example user

may have to wait for too long to receive recommendations or if the presentation is

unappealing. Some systems want users to specify their interests manually. There are a

few system that collect user’s interests automatically.

1.3.3. Satisfaction of the Recommendation Provider:

Typically for any system, it is assumed that providers of systems are satisfied when their

users are satisfied. But one other interest of the provider is to make low cost system,

where costs may refer to labor, disk storage, memory, CPU power, and traffic [12].

Hence a good recommender system is developed, operated, and maintained at a low cost.

Other providers may want to generate a profit from the recommender system A news-

4

website might suggest articles of longer length so as to keep their readers a longer time

on their website [13].

To evaluate the performance of recommendation algorithms we check coverage and

accuracy metrics of the algorithm. Coverage measures the percentage of items for which

predictions can be made by recommender system. Accuracy can be either statistically or

by decision-support. Statistical accuracy metrics mainly compare the actual ratings R in

the User Item matrix with the estimated ratings and include various parameters like Mean

Absolute Error (MAE), root mean squared error, and correlation between predictions and

ratings. Decision-support measures determine the degree of relevance to which a

recommender system can make predictions of items [14].

1.4 Classification of Recommender System

Recommender systems are broadly classified in following categories:

Collaborative recommendations

Content – based recommendations

1.4.1 Collaborative Filtering

Collaboration based recommender system predicts the utility of items for a particular user

based on the items previously rated by other users. There has been various collaborative

recommender system developed. Grundy system [15] is considered to be first

recommender system recommending books. It uses stereotypes for building user models

from limited information. . GroupLens [16] [17]. Video Recommender and Ringo were

the first systems to use collaborative filtering algorithms to automate prediction.

We will not get into the details of collaborative system, but would limit it to a brief

overview of how it works and its classification.

Let the utility of item for user is denoted by . It is estimated on the bases of

utilities assigned to item by the users who are “similar” to user . For

example, for recommending movies to user , the collaborative recommender system will

create set of user that are similar to user c by comparing their user profiles. The movies

they liked the most would be recommended to user [18], [14].

5

Collaborative recommender system can be grouped into two general classes [17]:

1. Memory-based (or heuristic-based) and

2. Model-based.

Memory-based algorithms

Memory-based algorithms predict rating of items on the bases of previously rated items

by all the users i.e. is the aggregate of the ratings of most similar users for the same

item . To measure distance there are various similarity functions that can be used as a

weight. The two most popular approaches to calculate similarity are correlation and

cosine-based approach. In this paper we would use Euclidean distance.

In Cosine-based approach, the two users and are treated as two vectors. The

similarity between two vectors is the cosine of the angle between them [14]. The same

correlation-based and cosine based techniques can be used to compute similarities

between items and obtain the ratings from them.

Model-based algorithms

In Model – based algorithm, with the help of collection of ratings we learn a model for

making rating predictions. We use probabilistic approach to collaborative filtering [17].

Rating values are integers between and . We can calculate the probability that user

will rate item to a particular value given all ratings of different items rated by user

with some expressions [17].

In some applications, model-based methods might excel over memory-based approaches

when we talk about accuracy of recommendations. As model-based techniques does not

calculate utility (rating) predictions according to some heuristic rules, but it calculates

according to a model learned from the underlying data by using statistical and machine

learning techniques. There are certain theories that support argument that method

combining both memory-based and model-based approaches can provide better

recommendations.

1.4.2 Content Based Approach

This approach to recommendations has its roots in information retrieval [19], [17] and

information filtering [20] research. Our topic, Locality Sensitive Hashing is part of

information filtering, but we would focus on it later in our work. These systems are

6

mostly used for recommending items with textual information. Fab system [19], Syskill

and Webert system [15] recommend pages with important words. These systems are used

for organizational purposes for eg. Educational institutes recommending papers.

There are various techniques involved in a content based recommender system. Finding

and specifying keywords weights in information retrieval technique is mostly done by TF

IDF measure [17].

We give a little demonstration of content based approach to show what it is about. Let if be the weight of keyword in document , then content of document could be

defined as () . Where is the total no. of keywords in

document .

All the items that are previously rated by the user are compared with the candidate items

that could be recommended and the items that match the best are usually recommended.

If say content based systems recommend on the basis of user profile defined as which is created by analyzing of those

items usually seen and rated by a user. It contains tastes and preferences of that particular

user.

Let us say for a user , contains .
Where denotes importance of word to user . Profile can be computed by Rocchio

algorithm [16], giving an “average” vector from an individual content vectors [19], [17].

And in case of documents probability of liked by the user or not can be found using

Bayesian classifier [15] or Winnow algorithm [21] but latter works well with large

feature set of documents [22].

Both of these functions when compounded provide us our basic output function which is termed as utility function which is basically a score function defined

as: ()
This scoring function is usually defined for information retrieval method in heuristic

measure like cosine similarity [17]. Bayesian classifier also can be used for content based

7

recommendation with some other machine learning techniques like clustering, artificial

neural networks, decision trees [15] etc. These learning techniques use underlying data to

learn a model and use that model to calculate utility prediction and not some heuristic

function. All these recommendation techniques in content based recommender systems

mostly are related to text retrieval. Example, adaptive filtering [23] observes documents

one by one in a continuous document stream to identify relevant documents more

accurately and threshold setting for a query to find the relevant document for a user it

decides the extent up to which a query should be matched.

As stated earlier Recommender system comprises of various research fields hence there is

wide scope of future work in almost every field. For example for comprehensive

understanding of users and items, we need to adopt some advanced profiling techniques

[14]. An important field is multi – dimensionality of recommendations. This will be the

domain in which we will be interested in the further discussion as we introduce topic of

locality sensitive hashing. Most of the recommendation examples Operates in the two-

dimensions like space. There is always a chance of some crucial contextual

information for most of the applications that are not taken into consideration. SAY, the

utility of a various products for a user may depend significantly on time (e.g., the time of

the year, season or month, or the day of the week). In such cases we can define the utility

(or ratings) function for users over a multidimensional space
[14].

As we discussed the text retrieval techniques are most vocal in content based information

retrieval based on which recommendations are mostly done. This information retrieval

procedure has now become more prominent in image processing in the past decade.

There are various methods proposed to extract information from images which are

usually termed as ‘features’ and recommend or search similar images based on those

features which require some processing. Now these features of images that are extracted

as a part of information retrieval are usually found to be high dimensional (in hundreds)

and processing of this high dimensional data in database that contains millions or billions

of images does not come really very handy. A lot of techniques like – trees, metric –

trees that have been discussed before were tried on this data too but they all were a

8

disaster mostly because of the “Curse of Dimensionality” phenomenon. So a newer

technique was introduced in 98 called “Locality sensitive hashing” by P.Indyk et.al.[24].

It has become important to address these images due to the fact that they are high

dimensional and their size is almost in billions and is increasing at a faster rate. Hence

labeling all these images has become necessary.

Locality sensitive hashing (LSH) technique tackles this problem with ease. LSH has also

been used in various other domains due to its tremendous results, high level performance

and compatibility with dimensionality. Various extensions of LSH have been introduced

in the past decade. These extensions can be grouped into two groups based the method of

how they implement LSH technique. First is linear projection method and second is

kernel based method. We describe both methods here but our focus will be on kernel

based method in the further discussion.

Linear projection method implement a family of locality sensitive hashing functions

which map same/similar objects no nearby buckets with high probability and dissimilar

products to farther buckets with high probability. Hence probability is the greatest factor

in finding similar objects. LSH obtains a query time of ቀ ቁ in worst case. LSH is

able to achieve a query time of ቀ ቁ after improvising the technique [25]. Its

performance can be improved by tweaking the I/O disk access by the use of – trees

[26]. We can also reduce space requirement of LSH by introducing multi probe LSH

method [27]. LSH also encouraged an idea of compact binary codes to which many

studies are focused on [28]. Many other issues are being addressed by different works

that are related to LSH which include the issues related to Hamming distance [24],

normalized partial matching, lp norms, learned Mahalanobis metrics.

The regular LSH has some limitations with it that it assumes the data that is being

processed come from multidimensional vector space and their underlying embeddings are

also known and computable. Hence we require a framework that processes the underlying

embeddings of data implicitly by exploring the similarity/kernel function. This

framework is provided by kernel based methods particularly known as Kernel based LSH

[29]. A variant of KLSH is proposed in which the hamming distance between the two

9

vector’s binary codes is strongly related to the shift invariant kernel [30]. KLSH

technique is speeded up by introducing an algorithm for learning binary codes with

kernels [31]. But most of the techniques used only a single kernel for kernel based

hashing methods [29] ,[30] ,[31],. Several attempts have been made to produce a multi

kernel hashing methods but they were not able to explore the true potential. The problem

with single kernel is that they explore only a single feature set, but what if the data

involves a large amount of features to describe itself. Similar is the case of images. There

is a large no. of feature extraction techniques available for images and can be analyzed

using various similarity functions. So they require to be accessed and analyzed using

most of the feature set [33], [32] and for that we require to implement multiple kernel

function. Now the question that comes is how to configure multiple kernel function.

For this two algorithms are proposed one is weighted multi kernel LSH that calculated

weight of each kernel and dedicated the hashing bits accordingly and the other one is

boosting multi kernel LSH that used boosting learning technique to learn the bits

allocation of each kernel [35]. BMKLSH introduced the concept of boosting rounds for

learning of the bit size of each kernel. The optimization is done according to the

following problem:

 ∑ (∑
)

 ∑
To this end we propose our novel multi kernel LSH method that uses a refined learning

technique of bootstrap sequential projection. Bootstrap learning algorithm performs

regularized learning based hashing [34]. Learning technique is used which corrects the

error effectively from holistically learned bits in previous projections with no

computational overhead.

10

Chapter 2

Literature Review

Piotr Indyk et. al. [24] first introduced locality sensitive hashing in 1998. He introduced

for {0,1}
d
 Hamming metric space of dimension d defined as

 (1)

Let be a metric space defined where . If contains n data

points i.e. (p1,p2,……………pn). Then distance of any point p to the rest of the set could

represented as

 (2)

Where d(p, q) is Euclidian distance. Diameter of set P is

 (3)

A ball of similarity measure D is a set that contains all those points that are similar to a

particular point say q. It is represented as

 (4)

A family of hash function is defined as

 (5)

The hash function family is said to be - sensitive for D if for any

If []

If []
Where
And [] i.e. is a probability based similarity estimation

technique. The complexity for this technique for -approximate result is

11

 (⁄) space and (⁄) hash function evaluation for each query and

operations for evaluating hash function.

Venu satuluri et.al. [39] In their paper mentioned two phases to a similarity search

algorithms i.e. candidate generations phase and candidate verification phase. They have

also developed two algorithms bayes LSH and bayes LSH- Lite. Bayes LSH performs

both candidate searching and similarity estimation, while Bayes LSH- Lite only performs

candidate searching and computes the similarities of unpruned candidates exactly. The

algorithm Bayes LSH returns pairs of objects with similarity estimation where as Bayes

LSH - lite returns objects that are exactly similar.

Classical similarity estimation: If we compare n hashes and have observe agreements

in hash values, the maximum likelihood estimator for the similarity is: ̂
But there were certain limitations with this approach like, difficulty of tuning no. of

hashes. To get the same level of accuracy for different similarities, we will need to use

different number of hashes. It could be easily done but we don’t know the true similarity

of each pair.

Paper also uses different similarity measures like jaccard similarity and cosine similarity

for bayes LSH.

Junhao Gan et. al. [40] gave another variant of LSH which based on Currently, the

primary choice of constructing an LSH function for Euclidean distance is to project data

objects (represented as vectors ⃗) along a randomly chosen line (identified by a

random vector ⃗) that is segmented into equi-width intervals of size w, and then project

data objects to the same interval which are termed as “colliding” in the hashing scheme,

for this we take each interval as a bucket.

LSH function is of form ⃗⃗ ቔ ⃗⃗ ⃗⃗ ቕ where b is real no. chosen from []
uniformly.

12

Exact Euclidean LSH (E2LSH) exploits LSH as : a set of LSH functions are randomly chosen from LSH family (defined by equation 5) then

they are joined together to form a compound hash function

 for any object . is used to hash all data objects into hash table . We use a compound function for

hashing because it reduces the probability of collision of two “distant” data object.

It is difficult to design good compound hash function which would drop every pair of

“close” objects in the same bucket for at least one hash table. Hence several hundred

several hundred of compound hash functions and hash tables are needed in the E2LSH

method to guarantee good search accuracy.

Another LSH defined is Collision Counting LSH (C2LSH). It chooses a set of LSH

functions with appropriately small interval size and form a function base,

denoted as . Intuitively, if a data object is close to a query object ,

then the two objects are very likely to collide under every single LSH function in .

Accordingly, should collide with under a large number of LSH functions.

C2LSH exploits only a single base of LSH functions , where

each is randomly selected from an -sensitive LSH family. Here is the

base cardinality of . builds a hash table by hashing each data object in the

database with to an integer. Each hash table is surely a sorted list of buckets,

and each bucket contains a set of object IDs of the objects that will fall in the bucket.

When a query arrives, first locate bucket in which query will fall.

Compute for and find union of data objects colliding with , for

every data object we can compute .

Identify set of all frequent objects. If has less than objects, (is the cardinality of

the database and is allowable percentage of false positives) we have to compute

distance of each object of , otherwise compute distance of first objects.

13

Bahman Bahmani et. al. [41] gives another enhancement to LSH distributed locality

sensitive hashing. Two main instances of distributed frameworks are batched processing

system MAP REDUCE [61] and real time processing system active distributed hash

tables (Active DHT). Set of data points arriving as batch or real time.

Parameters is the no. of hash function in a hash set taken from hash family as defined

in eq (5). is the max no. of hash table that can be used. is the max no. of bits of hash

function. and are the hash function families.

If a machine processes a (key, value) pair and let be randomly chosen hash function for any data point a (key, value) pair is generated.

For each query point , they generate the offsets , for each of them a

(Key, Value) pair is generated. Then, for any received query point , the

machine with id retrieves all data points , if any, with

which are within distance of from .

But the new idea is to use another layer of locality sensitive hashing to distribute the data

and query points over the machines. More specifically, for a parameter value , they

sample an LSH function . ቔ ቕ where is chosen

uniformly from[]
Then from they generate (key, value) pair () . Then add to a

bucket for each query point , for each unique value in the set
We generate a (Key, Value) pair Then, all the data points will be on machine

such that as well as the queries one of whose offsets gets mapped to

by .

Narayan Sunderam et al [42] has given a most popular and widely implemented

application of LSH., but to make PLSH work well there were few algorithmic and

technical contributions required to make.

1. Both hash table construction and searching in it are distributed across multiple cores

and multiple nodes in PLSH.

14

2. Within a single node, multiple cores will access concurrently the same set of hash

tables. For this techniques to batch and rearrange accesses to data are developed to

maximize cache locality and improve throughput.

3. They also develop a novel cache-efficient variant of the LSH hashing algorithm, which

improves index construction time. We try to minimize cache miss effects by performing

software pre fetching.

4. They propose a new hybrid approach that buffers inserts in an insert optimized LSH

delta table and merge these into our main LSH structure periodically, to handle streaming

arrival and expiration of old documents,.

5. To accurately project the performance of single- and multi-node LSH algorithms to

within 25% of obtained performance they developed a detailed analytical model.

System consists of multiple nodes, each node store a portion of the original data in-

memory for processing speed. Hence memory size determines the total capacity of a

node. Coordinator broadcast queries from different clients to all nodes, with each node

querying its data. Responses from each structure are concatenated by the coordinator

node and sent back to the user

Two main steps in LSH table construction

(1) Hash functions are applied on every data point to generate the k-bit indices into each

of the L hash tables.

(2) Insert each data point into all L hash tables.

Each hash function is the dot-product between randomly generated hyper plane in the

high-dimensional vocabulary space and the sparse term vector representing the tweet.

To construct a hash tables are required to consist of contiguous arrays with exactly

enough space to store all of the records that hash to (collide in) each bucket, and it is to

be stored in memory and in parallel in a way that maximizes cache locality.

Process of insertion into the hash tables can be viewed as a partitioning operation. This

involves three main steps:

15

(1) Generate a histogram of entries by scanning each element of the table and in the

various hash buckets;

(2) Obtain the starting offsets for each bucket in the final table by perform a cumulative

sum of this histogram

(3) Re compute the histogram and perform an additional scan of the data, this time adding

it to the starting offsets to get the final offset for each data item.

This computation needs to be performed for each of the L hash tables.

Hao Xia et. al. [35] has provided another extension of LSH with kernel function over a

large collection of image database. They have discussed every implementation of LSH

using Kernel function. It includes scalable image retrieval based on Locality Sensitive

Hashing using Single Kernel, using multiple kernels and at the end they proposed a

boosting algorithm for multi- kernel implementation of LSH.

The kernel function used by them is defined as

Where is a distance function, for the sake of simplicity they have considered

Euclidean distance. In the experimental setup they have used a sequence of 9 kernel

functions.

The various multi kernel algorithms proposed combine the result of separate single kernel

function. This approach fails to fully explore the power of multi kernel and most of all

this technique is completely unsupervised. The boosting approach followed provides the

optimal combination of multiple kernels.

To find the optimal allocation of bit sizes

If is the no. of bits allocated to kernel are:

 ∑ (∑
)

 ∑

(6)

16

This is a NP hard problem where is the average precision performance of applying

the kernel. After each round of kernel algorithm, best kernel with largest weighed

Average precision performance over the current distribution is:

 ∑

R. Zhang et al. [43] proposed a non linear non stationary multiple kernels combination

algorithm E2LSH –MKL. Exact Euclidean LSH- MKL extends the Group Sensitive –

MKL by using E2LSH method for clustering instead of K-means method for clustering.

Multi – kernel learning (MKL) tries to describe the complex data. The conventional

method tries it by applying linear and stationary kernel combination format. E2LSH

method makes clusters and partition image into different clusters. E2LSH based multiple

kernel learning classifier is trained on these clusters and assigns different weights to

different clusters. Hence captures intra class diversity of images effectively. A function

set of k – LSH functions defined as: where
for each derives a k – dimensional vector . Then primary and secondary hash

functions are used to produce a hash table saving data points. On this data E2LSH

performs feature point clustering. E2LSH also supports dynamic expansion of features. It

uses the hadamard product to produce nonlinear combination of multiple kernels.

 () ∑ ()

 () {

M is no. of base kernels and is the hadamard product of . Represent the kernel weight that is derived by statistical property of data

group . This weighting function is termed as:

 ∑

Where represents statistical property of group over kernel function.

17

Guangtao Xue et. al. [44] proposed a scheme to construct structured overlay network by

using LSH scheme. This mechanism is termed as TSO and the network is a two layer

topology aware network. TSO clustered the physical nodes into P2P ring at local level.

This ring is regarded as the virtual node when we take the overall P2P overlay network as

the high level chord ring. It reduces the overhead. The LSH used in TSO reduces the

mismatching problem. The paper simulates the network to find the results in comparison

of the traditional structured overlay.

Joly et. al.[45] proposed an indexing technique used for approximate similarity search

called multi probe LSH which probes multiple buckets of hash table. They define

posteriori model that takes into account info of queries and objects that are returned

which results in controlled search and probable buckets are selected more accurately.

They proved that posteriori technique is better multi probe LSH Technique in terms of

quality control. Contextual and personalized knowledge can also be adapted as prior

information to the algorithm which focuses the retrieval on context aware objects making

search more efficient.

M.datar et. al. [46] also proposed scheme for approximate nearest neighbor problem

based on LSH using p- stable distribution. They have proved that the algorithm can find

exact nearest neighbor in for data that satisfies certain bounded growth

condition. Due to the LSH scheme the resulting time bound of the query is free of large

factors and is 40 times faster than trees. The algorithm is generalized to arbitrary norm for []. LSH solves the decision version of the NN problem. The same

can be done with trees but that would require complexity reduction overhead which

increases the running time. We can use approximation parameter to match the LSH

result but it returns the results with very guarantee on the reality.

Charikar et. al. [47] uses the fact that LSH scheme leads to compact representation of

objects hence estimating similarity between them from these compact sketches. The

paper showed the rounding algorithms used in context of approximation algorithm can be

done with LSH scheme for LP’s and SDP’s by finding alternatives to minwise

independent permutation for estimation of set similarity and also estimate similarity

between two vectors. And they also created scheme for n points distribution on metric

18

space, with distance is measured by Earth Mover Distance. It map distributions to metric

space such that for distribution and [()]

Haghani et. al. [48] maps multidimensional buckets of LSH to linearly ordered set of

peers that derive requirements for search results of good quality and for limiting network

access and maintaining indexed data jointly. They proposed two mapping techniques

such that buckets storing similar values are present nearby and they possess load

balancing due to predictable output distribution. These are robust and scalable solutions

that create index using proposed mapping and algorithms that find K nearest neighbor

and range queries.

Dasgupta et. al. [49] proposed a speed up method of Euclidean Locality sensitive

hashing by using randomized hadamard transform in nonlinear nonlinear setting. If L is

no. of hash functions are used k is the no of bits in d – dimensions they proposed a

method reduce the complexity of LSH from O(dkL) to O(d log d +kL). They introduced

two new algorithms named ACHash and DHHash. ACHash is a modification of the fast

Johnson–Lindenstrauss transform (FJLT) which obtain hash buckets by using rounding

and thresholding steps. DHHash has two applications of Hadamard transform with

collision probabilities as that of LSH. They have also shown results with the help of an

analysis method performed over 4 large datasets with 20% query time improvement.

Boyi Xie et. al. [50] proposed a scheme for Semi Supervised agglomerative clustering.

They calculated Hamming distance between hashed value of Kernelized Locality

sensitive Hashing (KLSH) which decreases the computation time. They have used

distance metric learning to get competitive precision and recall comparing to get k means.

KLSH preserves neighborhood and provides a reasonable substitutes for exact inter

instance distances with high probability and improves precision and recall.

Jeremy Buhler et. al. [51] introduced a new algorithm LSH – ALL – PAIRS it finds

non-gapped local alignments in genomic sequence. Genomic DNA sequences are

essentially compared to find conserved genome features. The algorithm uses randomized

search technique of LSH which makes it sensitive and efficient in finding local

19

similarities as little as 63% identities in mammalian genomic sequences. However the

algorithm guarantees to find only pairs that match exactly while the missed pairs are

controlled by increasing the iteration. Theoretically the number of comparisons to be

performed can be up to where is the no. of hash functions. Practically for

sequence comparisons combination of and is taken where is the total no. of features.

Tanmoy Mondal et. al. [52] proposed a fast word retrieval technique which deals with

heterogeneous document image collection. Gabor features of the word image are

extracted which are used for generating hash table for fast retrieval of similar image from

large dataset. Algorithm provides a sub linear time similarity search for a wide class of

similarity functions. KLSH focused on unknown kernelized visual data and require no

assumptions on input or data distribution. They were able to retrieve 50% of the relevant

words when only 20% of the words were accessed.

Alexandr Andoni et. al. [53] were able to crank up a notch regarding LSH by

introducing a new data structure for c approximate nearest neighbor problem for they

were able to achieve a query time and space complexity of where ቀ ቁ . This data structure surpasses the lower bound

complexity of LSH. The idea that was used in this approach was to hash points so that

collision probability of points that are closer to each other becomes much higher than for

those which are far apart. Query results are retrieved from the bucket on which the query

point falls.

Wang, Shuhui, et al. [36] Due to the fact of SSL semi supervised learning not being able

to incorporate multiple information sources and is not suitable for learning on real world

dataset due to heavy computation and uncontrolled unlabeled data caused because of no

sample selection on unlabeled data. So they proposed a method that imposed LASSO

regularization on the kernel coefficients for avoiding over fitting and conditional

expectations called scalable semi supervised multiple kernel learning (S
3

MKL). For

reducing risk of unlabeled data, they used multi – kernel locality sensitive hashing

(MKLSH). Hence a combination of S
3
 MKL and MKLSH was presented by them. They

were able to prove that this method is suitable for annotation of image and personalized

re-ranking.

20

Hu Xin et. al. [54] explored the contemporary nature of static and dynamic clustering

and used clustering ensemble concept to propose DUET method. It improved existing

ensemble algorithm to reconcile differences between base malware and clustering by

incorporating cluster quality measure. They improved scalability of behavior based

clustering by adopting LSH. DUET method unifies static and dynamic clustering results

systematically by building a framework. They proved that DUET improved coverage by

20 – 40% with highest precision of the two algorithms.

V.Tomar et.al. [55] Based on manifold learning based technique that are used for feature

space transformation and semi supervised learning they proposed an approach to conquer

the immense computational requirements of this technique. They applied LSH technique

to this method that uses cosine correlation based distance measure. Due to LSH they are

able to achieve complexity reduced by a factor of 9 without affecting speech recognition

performance. In the paper they populated the affinity matrices in space transformation by

using a fast LSH algorithm. They have used Correlation preserving discriminant analysis

CDPA that utilizes cosine based distance measure for characterizing domain relationships

against feature vectors. Hence they used E2LSH for hashing. They implemented LSH

within CDPA framework to achieve computational gains without affecting ASR

performance.

Debing Zhang et. al. [56] tried to focus on Nearest neighbor problem and its importance

and the solution that are generally provided to fix it is creating a data structure like -

tree, k means trees. This paper also proposes a method that combines the advantages of

both hashing method’s fast computation and an effective data structure. This method

easily accelerates the searching procedure. It takes hierarchical k means tree and extend

its each node into a structure which contains accurate representations and approximate

representations in hamming space. Hence it approximated and accelerated the traditional

search strategy by introducing the hamming space computation. It is liable to consume time complexity in modern CPU architecture.

Kristen Grauman et. al. [57] in hashing algorithms we try to learn the binary

projections of the data that is hashed. This binary projection is a powerful tool to index

large collection according to their content. And we can search data efficiently using hash

21

tables. They proposed several supervised and unsupervised techniques to generate binary

code. Based on spectral analysis and kernelized random projections they try to integrate

boosting, metric learning and neural networks into hash key construction. These methods

make scalable retrieval for variety of robust similarity measures. These methods were

able to provide crucial scalability for usual search problems. The diversity of approaching

wide range techniques makes this procedure very much popular.

Yadong Mu et .al. [58] discussed about, usually locality sensitive hashing support metric

data but human perception compares reasonably with non – metric distances, so

considering this theory they proposed LSH technique that support non metric data. They

embed data into an implicit kernel Krein space and then hashed to obtain binary bits and

to ensure collision probability reflects the non – metric distance of feature space they

used norm keeping property of p – stable function. The symmetric non – metric distances

are efficiently interpreted by Krein space theory. It captures information contained in

negative singular values by deriving two step LSH function.

Maxim Raginsk et. al. [59] talks about the problem of matching binary codes of vectors

that are similar in original space map. For this they introduced simple distribution free,

random projection based encoding scheme that relates the hamming distance between

binary code two vectors with the value of shift invariant kernels between the vectors.

This method makes kernel bandwidth a free parameter, hence providing flexibility to

adapt to target neighborhood size. This makes sure that a fraction of neighbors are

mapped to the strings for each query. This strategy increases recall for low hamming

radius but sacrifice some precision.

Junfeng He et. al. [60] focuses on large scale data of general formats with any kernel

function and develop a new hashing algorithm to create codes for it. These kernel

functions can be on graphs, sequences, vectors, sets and so on and can be explicitly

represented and optimized and applied to compute hash codes for general format

samples. They made algorithm scalable to huge data and reduce time and space

complexity for indexing and searching by incorporating efficient techniques. This method

handles diverse types of similarities (including both feature similarity and semantic

similarity), so can be varied according to the task requirement. This paper creates

22

compact hash codes which can be scaled to huge dataset even consisting samples in

millions and that for general type of data for any kernel.

Chenxia Wu et. al. [34] studied under the regularized learning based hashing framework

about the semi supervised hashing methods. To capture the relationship among the data

points they introduced non – linear hash function which makes the dimensionality of

matrix much smaller than the dimensionality of one that use linear hash function and at

the same time make it independent of dimensionality of data space. In this paper they

proposed bootstrap sequential projection learning method based semi supervised non –

linear hashing algorithm that deals with the error accumulated while converting the real

value embeddings into binary code by correcting them holistically without any extra

computational overhead. It takes into account all the previously learned bits. They

retained the projection vector through various iterations as the process of learning with

the help of regression matrix that was created with the help of anchors. These anchors are

the centers of clusters. Bootstrap learning method is liable to achieve best performance in

comparison to other learning methods.

23

Chapter 3

Problem Statement

In our work we try to find nearest neighbor in Euclidian distance with the help of kernel

function for given dataset of images. The images we use to work on are in the form of

extracted feature which is performed using different feature set.

We define nearest neighbor problem as

 “given a set P of n points in a d-dimensional space, build a data structure that,

given a query point q, reports any point within a given distance r to the query (if one

exists).”

In Content based systems (such as recommender system) similarity search plays an

important role, as recommender system is all about providing items similar to the users

taste. For this a variety of data structures have been proposed for indexing and searching

data points in a low dimensional space, but these algorithms becomes less effective in

high dimensional space due to their space and time complexity which grows

exponentially. This phenomenon is known as “Curse of Dimensionality”. To tackle this

problem recent studies focus on approximate approaches that try to remove high

dimensional problem. We try to find data points that are at distance from

query. As mentioned earlier it is a good practice to specify items with high

dimensionality to provide a good recommendation to users. Hence a well known and

recent technique called locality sensitive hashing is applied to many applications. It was

first proposed by Indyk et.al. for binary hamming space then it was extended for

use in Euclidean space by Datar et.al. One limitation of regular LSH is they require

vector representation of data explicitly. This limitation is addressed by kernel functions.

Kernel functions are capable of capturing similarity between data points. These kernel

functions are able to make a framework to process the underlying embeddings of data

implicitly. This framework is provided by kernel based methods particularly known as

Kernel based LSH In our work we first analyze the previously build kernel function

24

based locality sensitive hashing which is the building block of our research work. Then

we create multiple kernels from the same dataset and try to combine them with equal

weights treating each kernel equally. As this approach is naïve, so we implement a

learning method that iteratively learn the best combination for kernel functions. Then

finally we will use that multi kernel combination to create hash codes for the data and

store them in a hash table and then for each query that arrives we compute the hash code

for each query and fetch the results from the hash table.

So our problem statement could be stated as:

To create a searching technique for high dimensional data (images) on the basis of

similarity by using multiple kernel functions and combining them efficiently by learning

the best weight of each kernel function.

25

Chapter 4

Bootstrap and Kernel Based LSH

4.1 Analysis of Kernelized Locality Sensitive Hashing

KLSH is the basic algorithm that synthesizes large multi kernel algorithms. It works with

high dimensional dataset very easily and uses a kernel function to create a kernel matrix

from the given data. From this kernel matrix we obtain the hash keys for a particular

given length. To explain this procedure verbosely we introduce certain technical terms

and notations mentioned in table 1.

Symbols Meanings Matrix of data points of size d x n, where d is dimensionality and n is no. of

images. subset of X containing r elements, r<n. An RBF kernel function that defines similarity level between xi and xj. Hash function for i
th

 bit. feature set for input x.

K Kernel matrix made from kernel function. Total no. of hash bits. Euclidian distance

U vector containing cluster centers

G vector of length m containing mAP of i
th

kernel gi where i=1,2,……m Standard deviation

Z regression matrix

W Eigen projection matrix

H hamming matrix

Table 1. Description of notations that are used

Our data points are represented as a feature matrix. Let be a matrix

containing features for n data points. The algorithm efficiently computes the kernel

26

matrix K from a kernel function , for sampled data points that are taken from

the original dataset X. Kernel function used is a Gaussian kernel function which is

essentially designed to process high dimensional data. The details about this kernel

function are explained in next section. The kernel matrix that has been produced acts as a

similarity measure for high dimensional data points. Then LSH projects all the data

points to hash key which is a low dimensional binary space where b is

the length of the hash keys. These hash keys are being produced using kernel matrix K.

The procedure for creating hash keys is for a data value goes through certain processing.

All the images (data value) i.e. the complete set X are picked up one by one through an

iterative process. The KLSH function [29] first of all creates a set , contains random

data points from the dataset of data points. subset of . These

data points are then applied on kernel function to produce a kernel matrix K of

normalized form where . calculates the inner product of

and maps data points , into a functional space. This maps data point
through a nonlinear feature mapping function . This function satisfies the condition .

After that it generates b random vectors relating to the subset as {
where each random vector where is calculated as a vector containing

random indices from range [].
Calculate vector

. We will have { } for Where is calculated as svd of K. gives U, V, S matrices then replacing

K= and Then calculate the hash function: ∑ () where .

When query arrives to find s similar results or nearest neighbor, this query is also

projected on b hash keys using above procedure and then using hash table we find s most

approximate nearest neighbor. The details of this procedure are explained in algorithm 1.

The trick for making a better implementation of KLSH is by making r n i.e. the sample

set is same as the original dataset. The matrix produced is of order n x n called the gram

matrix. This would make the approximation exactly equal to the query.

27

Algorithm 1: Outlines the procedure of implementing KLSH

Input:

 A database with n images : {xi : i=1,2,……n} ,

 Length of the hash key: b

 A kernel function k(. , .)

Steps:

Select r random data points p1={x1, x2,………, xr}

Calculate distance matrix D as ()
Calculate standard deviation as √∑

Calculate kernel matrix K as K=[()]

 Where () ⁄

For l=1,….b repeat

 Form e
l
 by selecting t indices at random from [1,……,p] as

 Form w
l
 as = where svd(K)=U.V.S and .

 i.e. w
l
will be a vector of length p.

 Construct hash function as () (∑ ()).

End for

Hence the way to achieve high precision make r n. but this would make the calculation

more complex and hence increase the complexity. This implies a tradeoff has to be done

between precision and complexity. So the value of r must be decided appropriately. The

analysis of this algorithm has also been done by using various theorems [35] that show

kernel similarity is well approximated by
 the error decreases as the number of

bits b increases.

4.2 Multi kernel Locality Sensitive Hashing

The kernel matrix that has been created by algorithm 1 using a particular feature set from

r data samples is also created for other feature set on the same data samples. So in this

way we have few no. kernel matrices and now we create the hashing bits for each data

item using all these kernel matrices so as to include all variety of features in the bits. Let

us say if we have m feature set, we will be able to create m kernel matrices according to

28

algorithm 1. We assign a few no. of hashing bits say to each kernel matrices where and calculate the value of each bit by creating random vector

where and from each vector we create a weight vector using the

SVD of the kernel matrices.

Algorithm 2: MK-LSH

Input:

 A database with n images: {xi : i=1,2,……n} ,

 Bit allocation vector [b1, b2,….., bn]

 A set of m kernel function {kl |l=1, ………m}

Steps:

 r=0;

 Select r random data points p1={x1, x2,………, xr}

 For l=1,…….m

 Calculate kernel matrix as [()]

 For r=1,….bl repeat

 Form by selecting t indices at random from [1,……,p] as
 Form as = where svd()=U.V.S and

 i.e.
will be a vector of length p

 Construct hash function as () (∑ ())

 End for

 End for

Output: a set of b hash function
Afterwards we calculate the hashing bits of that particular data item using sign function.

The details of this procedure are given in Algorithm 2 and figure 1. The total no. of bits

is equal to the sum of all bits allocated to m kernel matrices i.e. ∑ . The value
that is chosen defines the configuration of the multiple kernels used.

The values learned from algorithm 3 are then applied on MK-LSH algorithm [36].

29

4.3 Bootstrap sequential projection multi – kernel locality sensitive

hashing

There are various methods to combine multiple kernels as we discussed earlier. To make

multiple kernel matrices, we use different feature sets to define input matrix X and apply

RBF kernel functions. The different feature set used are mentioned in further section. We

propose our technique for combining multiple kernels in a more efficient way. Bootstrap

sequential projection multi – kernel locality sensitive hashing (BSPMKLSH). This

algorithm creates a difference in the error condition as compared to the former boosting

approach. BMKLSH judges all the previous bits [35] separately by using boosting

technique [38]. But the latter judges all previous bits holistically i.e. error will occur with

either positive pairs with large hamming distance or negative pairs with small hamming

distance. and are threshold to determine ‘large’ and ‘small’ hamming distance

after ‘k’ projections. Our objective is to learn the optimal allocation of bit size to the

kernel function.

4.3.1 Bootstrap sequential projection Learning

A clustering method is firstly performed on the similarity distance of all inputs to obtain

cluster centers:

That act as anchors. Then the anchor graph defines the truncated similarities defined by

Zij, between r anchors and n data points.

 { ቀ ቁ ∑ ቀ ቁ

It forms a Z matrix that measures the underlying similarities between raw samples and

their corresponding data points. Z(x) is x’s corresponding column of regression matrix Z.

By introducing hash functions using anchors creates a non linear hashing function that

derives a projection matrix W. A relaxation is introduced through removing binary

constraints to the following objective function:

(7)

(8)

(9)

30

To maximize the information provided by each bit a regularizer is added.

After applying the relaxation we can solve the projection problem by directly obtaining

the eigen values of

Q=

Hence the error condition formulated as after k projections: ∑

 ∑

We represent the error conditions with matrix H
k
 with data points: ∑

In matrix form

H
k
=∑

H
k
 can be calculated recursively as:

H
k
=H

k-1
+

S is a label matrix that defines the relationship between the elements xi,xj. In this case we

use the similarity degree between these two elements as relationship.

 {
 represent a logical relationship of pair (xi,xj):

 { () ()

Error condition can be rewritten wrt

The updating rule for S is

(10)

(11)

(13)

(12)

(14)

(15)

(16)

(17)

(18)

(19)

31

 is increased weight matrix which is determined by:

 {

After extracting k
th

 projections from Q
k
 , to minimize redundancy in bits, Z is updated as

Algorithm 3: BSPMKLSH

Input:

 mAP of all kernel functions from algorithm 1 in the form of vector G,

 l = no. of projection iterations required, constant

Initialize:

Steps:

 Calculate S
1

using equation 17

 Calculate Z using equation 8

 For k=1,……l

 Form e as eigen vectors of set

 H
k
=H

k-1
+

 Calculate according to equation 20

 Form W={w1,w2,…..wl}

 End For

 Calculate ∑ ∑ ∑ .

Output:

(20)

(21)

32

We recursively calculate the update of ZZ
T
 to reduce computational effort. Since both C

k

and U
k
 are with the size of , we can efficiently compute the residual. The detailed

procedure is summarized in algorithm 3.

Bootstrap learning scheme possess complexity in calculating eigen projection matrix of

O(l.m
2
) for m kernel functions and l projection rounds. The cost of calculating hamming

matrix is O(m
2
). The values of learned from algorithm 3 are applied in algorithm 2. To

ensure the effectiveness of this algorithm we perform experiment and compare its

performance with the rest of the algorithms. The details of this experiment are discussed

in next chapter.

33

Chapter 5

Experiments

5.1. Test Bed

The dataset that we have used to examine our proposed algorithm, called Flickr [37]

(known as MIRFLICKR-25000) has been widely used for scalable image retrieval in

content based searching. This dataset contains 25,000 images maintained in groups, each

having one query image. We implemented our algorithm in matlab language environment

on a machine with configuration of 2gb ram intel i3 2.0 gHz processor.

5.2 Experimental Setup

We present our result in both complexity wise and in terms of percentage of data items

searched with hashing function. We set parameter to control the fractions of nearest

neighbor to be linearly scanned using LSH. Next we calculate performance metric using

mean average precision (mAP). Precision value is ratio of relevant examples over total

retrieved examples. mAP is the mean of AP of all the queries.

5.2.1 Image Feature extraction

We use 5 different feature extraction methods that are commonly used for describing

image.

GABOR filter is a linear filter that is used for edge detection. They are appropriate for

texture representation and orientation as their texture representation and discrimination is

similar to that of humans.

GIST features [62] provide a statistical summary of spatial envelop representation of the

scene to find global image feature.

Color histogram represents image’s color distribution in various color spaces. It

provides a summary of how data is distributed in an image.

Edge direction histogram converts 2D image into a set of curves and is more compact

than pixels. The discontinuities of intensity function of an image are localized.

Local binary pattern labels the pixels with binary number which is determined by

threshold the neighborhood of each pixel.

34

5.2.2 Kernel function

Each image is described by the above mentioned 5 features. Then we build kernel

function for each of these 5 features. For this we adopt RBF kernel. This Gaussian kernel

function is one kind of radial basis kernel function. is the L2 distance. This function can also be written as: ‖ ‖

In this function plays a significant role while evaluating performance and is tuned

according to problem. It’s over estimated value will make look exponential as linear and

non linear effect of high dimensional projection will be faded. Whereas the

underestimated value will make function lack in regularization and noise in training data

highly affects decision boundary.

5.2.3 Experimental Procedure

We firstly started with analyzing of single kernel based LSH and based on that we

derived kernel matrix of random data set based on each feature set. The representation of

such kind on kernel matrix is represented in Fig 1.

Fig 1. Representation of a 58 x 58 kernel matrix based on single feature set

35

In the same manner we created a kernel matrix for each feature set and derived the mean

Average Precision for each kernel function separately.

Fig 2. GUI of Bootstrap Sequential Projection Multi kernel Locality Sensitive

Hashing

This Mean value precision is utilized to learn the hash bit size of each feature set based

on our novel technique of bootstrap sequential projection learning. The GUI of our query

processor is shown in fig 2.

Fig 3. Query extraction and processing

36

This GUI takes the query as shown in fig 3 and processes it to find its hashing bits

according to different kernel functions and evaluate the results. The learned values were

then applied on multi kernel LSH algorithm to give efficient results as shown in fig 4.

Fig 4. Results of the queries

5.3 Algorithm comparison

As learning approach has only been implemented in BMK-LSH and BSP-MK-LSH, so it

would only be fair to compare only these two algorithms. We compare the two

algorithms in table 2. l is the number of rounds of projection.

Algorithm Learning Complexity Searching Complexity

BMK-LSH ⁄ m.d.b.

BSP-MK-LSH ⁄ m.d.b.

Table 2. Algorithms complexity comparisons

37

5.4 Experimental Result

We perform experiments in terms of top-n precision where n = 1; 2; 3; 4. We fix

parameters as = 0:1; b = 100; p = 100; l = 20; t = 30. Parameter is basically used to

show experimental result in the form of database items searched instead of measuring

search time. It is not difficult to understand that with increasing value more image

examples will be fetched and inspected and also increases the calculations of kernel

matrix but after a certain point retrieval of relevant images halt and only resistance is

added. As mentioned earlier in section 3 values of b and p1 represents the hashing bit size

and size of subset used for computing kernel matrix respectively which and when they

are increased our average precision also increases. Also the values of b and p needs to be

same which is clearly visible in the step 8 of algorithm 3 which carries the multiplication

of matrices of size p1 p1 and b 1. The value of t indices represents the size of vector which is not very sensitive to the algorithm though increasing t would not always

increase performance it could also degrade the performance. Next is the value of l which

represents the iteration rounds. Through our experiments we have found that l obtains a

saturation value after which increasing l introduces no effect.

Fig 5. mAP of n query for BSP MK LSH

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

1 2 3 4

KLSH

MK-LSH

BMK-LSH

BSP-MK-LSH

n Queries

T

o

p

n

p

r

e

c

i

s

i

o

n

38

The algorithm 2 uses a regularizer. The effect of adding a regularizer prevent over fitting

of models/features by penalizing them with extreme parameter value. They fine tune the

complexity of the model by using augmented error function with cross validation. The

data sets used in complex models produces leveling-off of validation as complexity of the

models increases. The training data set error decreases while validation data set error

remain constant. A second factor introduced by regularizer weighs the penalty against

more complex models with an increasing variance in data errors providing increasing

penalty as complexity increases. As a result produces fine judgment of size of feature set

used than produced from learning by boosting iterations.

Algorithm mean std

Simple- KLSH 0.16902

MK-LSH 0.16761

BMK-LSH 0.20460

BSP-MK-LSH 0.21139

Table 3. mAP and standard deviations of different algorithms

39

Chapter 6

Conclusion and Future Scope

Conclusion

In our thesis we have worked on the basic block of kernel based LSH called Kernelized

Locality Sensitive hashing. We analyze this procedure thoroughly and also implement a

multi kernel based LSH which does the same work as KLSH but w.r.t. various feature

data set. We have proposed a novel method of combining multiple kernels together by

learning the optimal combination of the hashing bits. We have done a literature survey to

find a good method of high dimensional feature analysis and were able to find a powerful

method that combines the multi kernel by assigning them weight that are learned by a

boosting technique. Then we introduced a learning algorithm, Bootstrap Sequential

Projection that learns the optimal weight of bits for each kernel. Bootstrapping is

successfully applied to the hashing bit size learning. This learning algorithm increases its

efficiency with increasing number of kernel functions. We have conducted a thorough

experiment to evaluate the performance of our proposed algorithm, which concludes this

algorithm to be a better approach than boosting multi-kernel LSH.

In Future work we will try to implement our techniques in other domains like e-

commerce, textual context etc. This procedure can also be used to learn the compact

binary code representation of high dimensional data. Including more and more feature set

would make it more versatile. We can also try to embed textual features of the text

related to the images and increase its scope of information learning.

40

References

[1] John L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18:509_517, 1975.

[2] Hannan Samet. Foundations of Multidimensional and Metric Data Structures.

Elsevier, 2006.

[3] Roger Weber, Hans J. Schek, and Stephen Blott. A quantitative analysis and

performance study for similarity-search methods in high-dimensional spaces.

Proceedings of the 24th Int. Conf. Very Large Data Bases (VLDB), 1998.

[4] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending and Evaluating

Choices in a Virtual Community of Use,” Proc. Conf. Human Factors in Computing

Systems, 1995.

[5] G. Linden, B. Smith, and J. York, “Amazon.com Recommendations: Item-to-Item

Collaborative Filtering,” IEEE Internet Computing, Jan./Feb. 2003.

[6] B.N. Miller, I. Albert, S.K. Lam, J.A. Konstan, and J. Riedl, “MovieLens Unplugged:

Experiences with an Occasionally Connected Recommender System,” Proc. Int’l Conf.

Intelligent User Interfaces, 2003.

[7] D. Billsus, C.A. Brunk, C. Evans, B. Gladish, and M. Pazzani, “Adaptive Interfaces

for Ubiquitous Web Access,” Comm. ACM, vol. 45, no. 5, pp. 34-38, 2002.

[8] W. Wade, “A Grocery Cart that Holds Bread, Butter, andPreferences,” New York

Times, Jan. 16, 2003.

[9] M. Balabanovic and Y. Shoham, “Fab: Content-Based, Collaborative

Recommendation,” Comm. ACM, vol. 40, no. 3, pp. 66-72,1997.

 [10] P. Brusilovsky and E. Millán, “User models for adaptive hypermedia and adaptive

educational systems,” The adaptive web, 2007, pp. 3–53

41

[11] N. Belkin and B. Croft, “Information Filtering and Information Retrieval,” Comm.

ACM, vol. 35, no. 12, pp. 29-37 1992.

[12] F. Ricci, L. Rokach, B. Shapira, and K.B. P., “Recommender systems handbook,”

Recommender Systems Handbook, 2011, pp. 1–35.

[13] A. Gunawardana and G. Shani, “A survey of accuracy evaluation metrics of

recommendation tasks,” The Journal of Machine Learning Research, vol. 10, 2009, pp.

2935–2962.

[14] J.S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive

Algorithms for Collaborative Filtering,” Proc. 14th Conf. Uncertainty in Artificial

Intelligence, July 1998.

 [15] M. Pazzani and D. Billsus, “Learning and Revising User Profiles: The Identification

of Interesting Web Sites,” Machine Learning, vol. 27, pp. 313- 331, 1997

[16] J.J. Rocchio, “Relevance Feedback in Information Retrieval,” SMART Retrieval

System—Experiments in Automatic Document Processing, G. Salton, ed., chapter 4,

Prentice Hall, 1971.

 [17] G. Salton, Automatic Text Processing. Addison-Wesley, 1989

[18] G. Adomavicius and A. Tuzhilin, “Multidimensional Recommender Systems: A

Data Warehousing Approach,” Proc. Second Int’l Workshop Electronic Commerce

WELCOM ’01), 2001b.

[19] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison-

Wesley, 1999.

[20] N. Good, J.B. Schafer, J.A. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and

J.Riedl, “Combining collaborative filtering with personal agents for better

recommendations,” Proceedings of the National Conference on Artificial Intelligence,

JOHN WILEY & SONS LTD, 1999, pp. 439–446

[21] N. Littlestone and M. Warmuth, “The Weighted Majority Algorithm,” Information

and Computation, vol. 108, no. 2, pp. 212- 261, 1994.

42

[22] M. Pazzani, “A Framework for Collaborative, Content-Based, and Demographic

Filtering, Artificial Intelligence Rev., pp. 393-408, Dec. 1999.

[23] Y. Zhang, J. Callan, and T. Minka, “Novelty and Redundancy Detection in Adaptive

Filtering,” Proc. 25th Ann. Int’l ACM SIGIR Conf., pp. 81-88, 2002.

[24] P. Indyk and R. Motwani. Approximate nearest neighbor: Towards removing the

curse of dimensionality. In STOC, pages 604–613, 1998.

[25] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In VLDB, 1999.

[26] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high dimensional

nearest neighbor search. In SIGMOD Conference, pages 563–576, 2009

[27] Q. Lv, W. Josephson, Z. Wang, M. S. Charikar, and K. Li. Multi-probe lsh: efficient

indexing for high-dimensional similarity search. In VLDB. Vienna, Austria, 2007.

 [28] J. He, S.-F. Chang, R. Radhakrishnan, and C. Bauer. Compact hashing with joint

optimization of search accuracy and time. In CVPR, pages 753–760, 2011.

 [29] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image

search. In ICCV, 2009.

[30] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant

kernels. In NIPS, pages 1509–1517, 2009.

[31] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with optimized kernel

hashing. In KDD, pages 1129–1138, 2010.

[32] S. C. H. Hoi and M. R. Lyu. A multimodal and multilevel ranking scheme for large-

scale video retrieval. IEEE Transactions on Multimedia, 10(4):607–619, 2008.

[33] J. Zhuang, T. Mei, S. C. H. Hoi, X.-S. Hua, and S. Li. Modeling social strength in

social media community via kernel-based learning. In ACM Multimedia, pages 113–122,

2011. 64

43

[34] C. Wu, Jianke Zhu, Deng Cai, Chun Chen, and Jiajun Bu, “Semi-supervised

Nonlinear Hashing Using Bootstrap Sequential Projection Learning”, Knowledge and

Data Engineering, IEEE Transactions on (Volume:25 , Issue: 6), 10,1380-1393, june 13

[35]H. Xia, Pengcheng Wu, S. C.H. Hoi and R. Jin, “Boosting Multi-Kernel Locality-

Sensitive Hashing for Scalable Image Retrieval”, SIGIR’12, August 12–16, 2012,

Portland, Oregon, USA.2012 ACM 978-1-4503-1472-5/12/08

[36] S. Wang, S. Jiang, Q. Huang, and Q. Tian. S3mkl: scalable semi-supervised multiple

kernel learning for image data mining. In ACM Multimedia, pages 163–172, 2010.

[37] M. J. Huiskes and M. S. Lew, “The mir flickr retrieval evaluation,” in MIR ’08:

Proceedings of the 2008 ACM International Conference on Multimedia Information

Retrieval. New York, NY, USA: ACM, 2008.

[38] J. Wang, S. Kumar, and S.-F. Chang. “Sequential Projection Learning for Hashing

with Compact Codes”. In Proceedings of the 27
th

 International Conference on Machine

Learning (ICML), 2010.

[39] Satuluri, Venu, and Srinivasan Parthasarathy. "Bayesian locality sensitive hashing

for fast similarity search." Proceedings of the VLDB Endowment 5.5 (2012): 430-441.

[40] Gan, Junhao, et al. "Locality-sensitive hashing scheme based on dynamic collision

counting." Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data. ACM, 2012.

[41] Bahmani, Bahman, Ashish Goel, and Rajendra Shinde. "Efficient distributed locality

sensitive hashing." Proceedings of the 21st ACM international conference on Information

and knowledge management. ACM, 2012.

[42] Sundaram, Narayanan, et al. "Streaming similarity search over one billion tweets

using parallel locality-sensitive hashing." Proceedings of the VLDB Endowment6.14

(2013): 1930-1941.

[43] Zhang, Ruijie, Fushan Wei, and Bicheng Li. "E2LSH based multiple kernel

approach for object detection." Neurocomputing 124 (2014): 105-110.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6506067

44

[44] Xue, Guangtao, et al. "A topology-aware hierarchical structured overlay network

based on locality sensitive hashing scheme." Proceedings of the second workshop on Use

of P2P, GRID and agents for the development of content networks. ACM, 2007.

[45] Joly,Alexis, and Olivier Buisson. "A posteriori multi-probe locality sensitive

hashing." Proceedings of the 16th ACM international conference on Multimedia. ACM,

2008.

[46] Datar, Mayur, et al. "Locality-sensitive hashing scheme based on p-stable

distributions." Proceedings of the twentieth annual symposium on Computational

geometry. ACM, 2004.

[47] Charikar, Moses S. "Similarity estimation techniques from rounding

algorithms."Proceedings of the thiry-fourth annual ACM symposium on Theory of

computing. ACM, 2002.

[48] Haghani, Parisa, Sebastian Michel, and Karl Aberer. "Distributed similarity search in

high dimensions using locality sensitive hashing." Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database Technology.

ACM, 2009.

[49] Dasgupta, Anirban, Ravi Kumar, and Tamas Sarlos. "Fast locality-sensitive

hashing." Proceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2011.

[50] Xie, Boyi, and Shuheng Zheng. "Kernelized Locality-Sensitive Hashing for Semi-

Supervised Agglomerative Clustering." arXiv preprint arXiv:1301.3575 (2013).

[51] Buhler, Jeremy. "Efficient large-scale sequence comparison by locality-sensitive

hashing." Bioinformatics 17.5 (2001): 419-428.

[52] Mondal, Tanmoy, et al. "A fast word retrieval technique based on kernelized locality

sensitive hashing." Document Analysis and Recognition (ICDAR), 2013 12th

International Conference on. IEEE, 2013.

[53] Andoni, Alexandr, et al. "Beyond locality-sensitive hashing." arXiv preprint

arXiv:1306.1547 (2013).

45

[54] Hu, Xin, and Kang G. Shin. "DUET: integration of dynamic and static analyses for

malware clustering with cluster ensembles." Proceedings of the 29th Annual Computer

Security Applications Conference. ACM, 2013.

[55] Tomar, Vikrant Singh, and Richard C. Rose. "Locality Sensitive Hashing for Fast

Computation of Correlational Manifold Learning based Feature space

Transformations," Proc. Interspeech. 2013.

[56] Zhang, Debing, et al. "A unified approximate nearest neighbor search scheme by

combining data structure and hashing." Proceedings of the Twenty-Third international

joint conference on Artificial Intelligence. AAAI Press, 2013.

[57] Grauman, Kristen, and Rob Fergus. "Learning binary hash codes for large-scale

image search." Machine Learning for Computer Vision. Springer Berlin Heidelberg,

2013. 49-87.

[58] Mu, Yadong, and Shuicheng Yan. "Non-Metric Locality-Sensitive Hashing." AAAI.

2010.

[59] Raginsky, Maxim, and Svetlana Lazebnik. "Locality-sensitive binary codes from

shift-invariant kernels." NIPS. Vol. 22. 2009.

[60] He, Junfeng, Wei Liu, and Shih-Fu Chang. "Scalable similarity search with

optimized kernel hashing." Proceedings of the 16th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2010.

[61] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

OSDI ’04.

[62] Aude Oliva, Antonio Torralba.” Modeling the shape of the scene: a holistic

representation of the spatial envelope” International Journal of Computer Vision, Vol.

42(3): 145-175, 2001

46

List of Publications

[1] Harsham Mehta and Deepak Garg, “Bootstrap Sequential Projection Multi Kernel

Locality Sensitive Hashing,” 3
rd

 International Conference on Advances in Computing,

Communications and Informatics (ICACCI-2014), IEEE, 2014 [Accepted]

	Master of Engineering
	July 2014

