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                                                                                                                      ABSTRACT 

 
 

The vertex cover (VC) problem belongs to the class of NP-complete graph theoretical 

problems, which plays a central role in theoretical computer science and it has a 

numerous real life applications. We are unlikely to find a polynomial-time algorithm for 

solving vertex-cover problem exactly. Vertex-cover exhibits a coverable–uncoverable 

phase transition. The relationship of vertex-cover with other NP-complete problems is 

thoroughly studied in this work. This thesis work also analyzes the various algorithms 

on minimum vertex cover for standard classes of random graphs. The performance of 

all algorithms is compared with the complexity and the output solution that of the 

branch-and-bound problem solver (BB), approximation algorithm, greedy algorithm, 

simple genetic algorithm (GA), primal-dual based algorithm (PDB) and the alom’s 

algorithm. The results indicate that all algorithms give near optimal solutions. The 

performance differences of all algorithms on a graph are relatively small to obtain a 

vertex-cover. For undirected graphs, better performance is achieved by alom’s 

algorithm and for weighted graphs, better performance is achieved by primal-dual based 

approach. Additionally, alom’s algorithm is extended in order to give the all possible 

vertex-covers of a graph and the algorithm is implemented in c++. 
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problems, which plays a central role in theoretical computer science and it has a 

numerous real life applications. We are unlikely to find a polynomial-time algorithm 

for solving vertex-cover problem exactly. Vertex-cover exhibits a coverable–

uncoverable phase transition. The relationship of vertex-cover with other NP-

complete problems is thoroughly studied in this work. This thesis work also analyzes 
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output solution that of the branch-and-bound problem solver (BB), approximation 
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give near optimal solutions. The performance differences of all algorithms on a graph 

are relatively small to obtain a vertex-cover. For undirected graphs, better 

performance is achieved by alom’s algorithm and for weighted graphs, better 

performance is achieved by primal-dual based approach. Additionally, alom’s 

algorithm is extended in order to give the all possible vertex-covers of a graph and the 
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                                                                                CHAPTER 1 

                                                                       INTRODUCTION           

 

 Vertex cover problem is a NP-complete problem. If a problem is NP-complete, we 

are unlikely to find polynomial-time algorithm for solving it exactly, but this does not 

imply that all hope is lost. There are two approaches to getting around NP-

completeness. First if the actual inputs are small, an algorithm with exponential 

running time may be perfectly satisfactory. Second, it may still possible to find near 

optimal solutions in polynomial time. In practice near optimality is often good 

enough. An algorithm that returns near-optimal solutions is called an approximation 

algorithm. 

In computer science, the vertex cover problem or node cover problem is one of 

Karp's 21 NP-complete problems. It is often used in complexity theory to prove NP-

hardness of more complicated problems. 

The classical minimum vertex-cover problem involves graph theory and finite 

combinatorics and is categorized under the class of NP-complete problems in terms of 

its computational complexity (Garey & Johnson, 1979) [3]. Minimum vertex cover 

has attracted researchers and practitioners because of the NP-completeness and 

because many difficult real-life problems can be formulated as instances of the 

minimum vertex cover. Examples of the areas where the minimum vertex-cover 

problem occurs in real world applications are communications, civil and electrical 

engineering, and bioinformatics. However, only few studies exist that analyzes the 

performance of evolutionary algorithms. 

Definition: Consider a graph G= (V, E) where V and E are accordingly vertex and 

edges. A vertex cover of an undirected graph is a subset V⊆V such that if (u, v) is 

an edge of G, Then either uVor vVor both. 

The size of a vertex cover is the number of vertices in it. The vertex cover problem is 

to find a vertex cover of minimum size in a given undirected graph. Such a vertex 

cover is called an optimal vertex cover. Coreman describes an approximation 

algorithm with O (E) time for vertex cover problem is given. This algorithm finds the 

approximate solution. An algorithm for ―crown reductions for the Minimum 
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Weighted Vertex Cover problem‖ is given [1]. In this algorithm how crown 

decompositions and strong crown decompositions can be computed in polynomial 

time are described. 

There are two versions of the minimum vertex cover problem: the decision version 

and the optimization one. In the decision version, the task is to verify for a given 

graph whether there exists a vertex cover of a specified size. On the other hand, in the 

optimization version of this problem, the task is to find a vertex cover of minimum 

size. To illustrate minimum vertex cover, consider the problem of placing guards 

(Weigt & Hartmann, 2000) in a museum where corridors in the museum correspond 

to edges and the task is to place a minimum number of guards so that there is at least 

one guard at the end of each corridor. 

Minimum vertex cover is one of the Karp‘s 21 diverse combinatorial and graph 

theoretical problems (Karp, 1972), which were proved to be NP-complete. Minimum 

vertex cover is a special case of the set cover problem (Thomas H. Cormen & Stein, 

2001) which takes as input an arbitrary collection of subsets S = (S1, S2, .., Sn) of the 

universal set V, and the task is to find a smallest subset of subsets from S whose union 

is V. 

The minimum vertex cover problem is also closely related to many other hard graph 

problems and so it interests the researchers in the field of design of optimization and 

approximation algorithms. For instance, the independent set problem (Karp, 1972; 

Garey & Johnson, 1979) is similar to the minimum vertex cover problem because a 

minimum vertex cover defines a maximum independent set and vice versa. Another 

interesting problem that is closely related to the minimum vertex cover is the edge 

cover which seeks the smallest set of edges such that each vertex is included in one of 

the edges. 

Recently, the attention of physicists was drawn to the study of NP-complete problems 

like vertex cover and satisfiability. The reason is that, when studied on suitable 

random ensembles, these problems exhibit phase transitions in the solvability 

(Monasson, Zecchina, Kirkpatrick, Selman,& Troyansky, 1999; Weigt & Hartmann, 

2000b; Hartmann & Rieger, 2004), which often coincide which peaks in the typical 

computational complexity or changes of the typical complexity from exponential to 

polynomial or vice versa.  
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Suppose that to improve the performance of a computer network, you want to collect 

statistics on packets being transmitted. Draw a graph where the vertices are 

computers/routers, and edges are communication links: 

                                 

                        Figure 1.1: graph for computer network 

Collecting statistics can slow down the network, and requires installing custom 

software etc. So, we want to monitor the traffic on as few nodes as possible. We 

choose as small a set of nodes as possible on which to install the monitoring software, 

so that each communication link has monitoring software on at least one end, 

                              

           Figure 1.2: vertex-cover solution for computer network 

If we install the monitoring software on the black nodes, every communication link 

has at least one end black. This is the vertex cover.     

Example: In the figure1.3, {1, 3, 5, 6} is an example of a vertex cover of size 4. 

However, it is not a smallest vertex cover since there exist vertex covers of size 3, 

such as {2, 4, 5} and {1, 2, 4}. 

                                            

                                      Figure 1.3: Shows different vertex vectors. 
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                                                                                                                   CHAPTER 2 

                                              VERTEX-COVER RELATIONS 

 

2.1 Clique problem [1] 

Def: A clique in an undirected graph G= (V, E) is a subset V'  V of vertices, each 

pair of which is connected by an edge in E. In other words, a clique is a complete 

subgraph of G. The size of a clique is the number of vertices it contains. The Clique 

problem is the optimization problem of finding a clique of maximum size in a graph. 

As a decision problem, we ask simply whether a clique of a given size k exists in the 

graph.  

Instance: a graph G= (V, E) and a positive integer k ≤ |V|. 

Question: is there a clique V' ⊆ V of size ≥ k? 

2.2 Independent-set problem [1] 

Def: An independent set of a graph G= (V, E) is a subset V' ⊆ V of vertices such that 

each edge in E is incident on at most one vertex in V'. The independent set problem is 

to find a maximum-size independent set in G. 

Instance: a graph G= (V, E) and a positive integer k ≤ |V|. 

Question: is there an independent set of size ≥ k? 

The following are equivalent for G= (V, E) and a subset V' of V and 𝐺 = (V,𝐸 ), where 

𝐸 = {(u, v): u, v  V, u≠ v, and (u, v) ∉ E} 

(a). V' is a clique of  G. 

(b). V' is an independent of  𝐺  

(c). V—V' is a vertex-cover of  𝐺  
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            (a)                                   (b)                                     (c) 

Figure 2.1: Relationship of VC with other NP-problems. (a) Clique V' = {u, v, x, y} 

(b) Independent set V'= {u, v, x, y} (c) Vertex-cover V—V'= {w, z} 

2.3 NP-Completeness and reducibility 

When analyzing the complexity of algorithms, it is often useful to recast the problem 

into a decision problem. By doing so, the problem can be thought of as a problem of 

verifying the membership of a given string in a language, rather than the problem of 

generating strings in a language. The complexity classes P and NP differ on whether a 

witness is given along with the string to be verified. P is the class of algorithms which 

terminate in an amount of time which is O (n) where n is the size of the input to the 

algorithm, while NP is the class of algorithms which will terminate in an amount of 

time which is O (n) if given a witness w which corresponds to the solution being 

verified. 

NP-complete problems arise in diverse domains: Boolean logic, graphs, arithmetic, 

network design, sets and partitions, storage and retrieval, sequencing and scheduling, 

mathematical programming, games and puzzles and more. We shall use the reduction 

methodology to provide NP-completeness proofs for a variety of problems drawn 

from graph theory and set partitioning. There exist some problems which can be used 

to solve other problems, as long as a way of solving them exists, and a way of 

converting instances of other problems into instances of the problem with a known 

solution also exists. When talking about decision problems, a problem A is said to 

reduce to problem B if there exists an algorithm which takes as input an instance of 

problem A, and outputs an instance of problem B which is guaranteed to have the 
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same result as the instance in problem A, i.e. if LA is the language of problem A, and 

LB is the language of problem B, and if there is an algorithm which translates all l  

LA into lB  LB and which translates all l' ∉  LA into l'B  ∉ LB then problem A reduces 

to problem B. 

Polynomial-time reductions provide a formal means for showing that one problem is 

at least as hard as another, to within a polynomial-time factor. That is, if L1 ≤p L2 i.e a 

language L1 is polynomial-time reducible to a language L2, then L1 is not more than 

a polynomial factor harder than L2 , which is why the ―less than or equal to‖ notion 

for reduction in mnemonic. We can now define the set of NP-complete languages, 

which are the hardest problems in NP. 

For a particular type of computational problems, namely, optimization problems- 

where one looks for an optimal among all plausible solutions. Some optimization 

problems are known to be NP-hard, for example, finding a largest size independent 

set in a graph [Coo71, Kar72], or finding an assignment satisfying the maximum 

number of clauses in a given 3CNF formula (MAX3SAT)[1]. 

A proof that some optimization problem is NP-hard, serves as an indication that one 

should relax the specification. A natural manner by which to do so is to require only 

an approximate solution one that is not optimal, but is within a small factor C > 1 of 

optimal. Distinct optimization problems may differ significantly with regards to the 

optimal (closest to 1) factor Copt to within which they can be efficiently approximated. 

Even optimization problems that are closely related may turn out to be quite distinct 

with respect to Copt. Let the Maximum Independent Set be the problem of finding, in a 

given graph G, the largest set of vertices that induces no edges. Let the Minimum 

Vertex Cover be the problem of finding the complement of this set (i.e. the smallest 

set of vertices that touch all edges). Clearly, for every graph G, a solution to 

Minimum Vertex Cover is (the complement of) a solution to Maximum Independent 

Set. However, the approximation behavior of these two problems is very different, as 

for Minimum Vertex Cover the value of  Copt  is at most 2. 

One of these problems, and maybe the one that underscores the limitations of known 

technique for proving hardness of approximation, is Minimum Vertex Cover. Proving 

hardness for approximating Minimum Vertex Cover translates to obtaining a 
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reduction of the following form. Begin with some NP-complete language L, and 

translate ‗yes‘ instances x ∈ L to graphs in which the largest independent set consists 

of a large fraction (up to half) of the vertices. ‗No‘ instances x ∉ L translate to graphs 

in which the largest independent set is much smaller. Previous techniques resulted in 

graphs in which the ratio between the maximal independent set in the ‗yes‘ and ‗no‘ 

cases is very large. 

There are the steps to show the problem is NP-complete 

1. Show that the problem is in NP, 

2. Reduce an NP-complete problem to it, and 

3. Show that the reduction is a polynomial time function. 

2.4 Structure of NP-completeness [1] 

CIRCUIT-SAT is the first NP-complete problem. All proofs ultimately follow by 

reduction from the NP-completeness of CIRCUIT-SAT   

 

                       Figure 2.2: Structure of NP-completeness proofs 
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2.5 Theorem: VERTEX-COVER  NPC [1] 

Proof We prove VERTEX-COVER  NP first. Let the certificate to be a set of 

vertices V'  V. The verification algorithm checks if the following are true: (1) |V'| = k. 

(2) For every edge (u, v)  E, either u V' or v  V'. Obviously, this verification can 

be done in polynomial time. 

Now, we prove VERTEX-COVER  NP-hard by showing CLIQUE p VERTEX-

COVER. Let G (V, E) be the graph for the CLIQUE problem. We construct a new 

graph 𝐺  for the VERTEX-COVER problem. The construction of G‘ is easy. It is the 

complement graph of G. That is 𝐺  (V, 𝐸 ). 

 

 

v u 

w z 

y x 

v u 

w z 

y x 

(a) G G)b(  
 

Figure 2.3: Reducing CLIQUE to VERTEX_COVER. (a) An undirected graph G= (V, 

E) with clique V'= {u, v, x, y}. (b) The graph 𝐺   produced by the reduction algorithm 

that has vertex cover V– V' = {w, z}. 

 

Let |V| = n, k' = n – k. 

We shall show that G has a k-clique if and only if 𝐺   has a vertex cover with size k'.  

Suppose G has a k-clique V'  V. We claim that V – V' is a vertex-cover of 𝐺 . To see 

this, look at edge (u, v)  E'. Obviously, (u, v)  E. So, either u or v will not belong to 

V'. Then, u or v must belong to V – V'. So, V – V' is a vertex cover of 𝐺   with size |V-

V'| = n - k = k'. 
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   Conversely, suppose𝐺   has a vertex-cover V'  V, where |V'| = n - k = k'. Then, for 

any u, v  V, if (u, v)  E', then u V' or v  V' or both. This implies that if u V' 

and v  V', then (u, v)  E' or (u, v)  E. Therefore, V – V' is a clique of G with size 

|V-V'| = n – k' = k. 

 Thus, we have just proved CLIQUE p VERTEX-COVER. 

So, VERTEX-COVER  NPC. 

2.6 Vertex Cover Heuristics 

Many traditional heuristics for vertex cover are known. Perhaps the most obvious is 

the greedy algorithm, in which the vertex of maximum remaining degree (incident on 

the maximum number of edges) is repeatedly removed from the graph and added to 

the cover until all edges are covered. While intuitive, the algorithm actually performs 

poorly on many classes of graphs and has no fixed performance bounds. An 

alternative algorithm is focused on finding a maximal matching in the graph: while 

edges remain, choose an arbitrary edge, add both endpoints to the cover, and remove 

both vertices from the graph. Because each selected edge must be covered by at least 

one of its endpoints, the algorithm has a fixed performance bound of 2, i.e., the 

resulting cover is at most twice the optimum cover. A number of other traditional 

approaches to VC, typically with performance bounds close to 2, have been reported 

and are discussed in [4]. A local-ratio approximation algorithm with best known 

bound of 2- log(logn2logn) relies on the repeated removal of sub-graphs, specifically 

small odd cycles or triangles. 

Pramanick describes a novel stochastic optimization approach to VC as a "practical 

method for computing vertex covers for large graphs‖ [6]. Parallel Dynamic 

Interaction (PDI) is an inherently parallel optimization methodology that exploits the 

non-deterministic behaviour of shared-memory multiprocessors as the stochastic input 

to the algorithm. Individual processors search for covers in subsets of the complete 

graph. Global covers are formed by dynamic interaction between processors 

(reminiscent of a commodities trading process), in which the nondeterministic time of 

completion resolves competition between local solutions. Parallel dynamic interaction 

displayed very strong empirical performance on two problem classes (described later) 

when compared against traditional algorithms.  Neural network and genetic algorithm 
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approaches to VC provide improved quality solutions on certain of the benchmark 

problems used in the PDI study, albeit with significantly increased computation times. 

The importance of the encoding of the underlying problem is well-known for EA 

(Evalutionary Algorithms) optimization approaches. In the case of vertex cover and 

related problems, the most obvious approach is a direct encoding in which each bit of 

a binary chromosome of length |V| defines the presence or absence of the 

corresponding vertex in the cover. Most previously reported genetic algorithms for 

vertex-cover, independent set, maximum clique and related problems have used this 

direct encoding style. An obvious drawback of the approach is that the direct 

encoding allows infeasible solutions. The bit string of all zeros, for example, 

corresponds to an invalid candidate cover with no vertices.  

More importantly, the encoding allows infeasible solutions to be created from existing 

feasible solutions using typical mutation and recombination operators found in EAs. 

Previously reported work has typically attacked the problem with penalty functions, in 

which the fitness of solutions that violate constraints is reduced, or with validation 

procedures, in which infeasible solutions are corrected to some "nearby" valid 

solution. Kommu compared two validation techniques with three different penalty 

methods [12]. After lengthy empirical investigation on the VC problem sets of [15], 

he concluded that the validation procedure based GAs performed somewhat better 

than the various penalty methods as well as providing significantly better solutions 

than traditional or PDI heuristics. Bäck and Khuri used a direct encoding with a 

graded penalty function in their GA for IS [2]. They tested their algorithm with 

randomly constructed graphs, as well as a class of scalable regular graphs. Aggarwal 

and co-authors use a direct encoding along with a domain-specific "optimized 

crossover" operator in their GA for IS [1]. Their crossover operation incorporates a 

local search (NP-Hard in general) along with a validation procedure to correct 

infeasible child solutions. 
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                                                                                            CHAPTER 3 

             ALGORITHMS FOR VERTEX-COVER PROBLEM 

  

There are two types of algorithms: incomplete and complete ones. For complete 

algorithms, it is guaranteed to find the optimum or true solution. Hence the solution 

space is searched in principle completely. For incomplete algorithms, it is not ensured 

that the true solution or the global optimum is found. But they are very often 

sufficient for practical applications. This section outlines all existing algorithms to 

solve vertex-cover problem. That are (1) Approximation algorithm, (2) Branch-and-

Bound algorithm (BB), (3) Greedy algorithm (4) Genetic algorithm (GA), (4) Primal-

dual based approach (PDA) and (5) Alom‘s algorithm. 

3.1 Concepts of Approximation algorithm [1] 

Many problems of practical significance are NP-complete but are too important to 

abandon merely because obtaining an optimal solution is intractable.  If a problem is 

NP-complete, we are unlikely to find a polynomial-time algorithm for solving it 

exactly, but even so, there may be a hope. There are at least three approaches to 

getting around NP-completeness. First, if the actual inputs are small, an algorithm 

with exponential running time may be perfectly satisfactory. Second, we may be able 

to isolate important special cases that are solvable in polynomial time. Third, it may 

still be possible to find near-optimal solutions in polynomial time (either in the worst 

case or on average). In practice, near-optimality is often good enough. An algorithm 

that returns near-optimal solutions is called an approximation algorithm. 

3.1.1 Performance ratios for approximation algorithms  

Suppose that we are working on an optimization problem in which each potential 

solution has a positive cost, and we wish to find a near-optimal solution. Depending 

on the problem, an optimal solution may be defined as one with maximum possible 

cost or one with minimum possible cost; that is the problem may be either 

maximization or a minimization problem. 
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We say that an algorithm for a problem has an approximation ratio of ρ(n) if, for 

any input of size n, the cost c of the solution produced by the algorithm is within a 

factor of  ρ(n) of  the cost c* of an optimal solution: 

                           Max(c/c*, c*/c) ≤ ρ (n) 

We also call an algorithm that achieves an approximation ratio of ρ(n) a ρ(n)-

approximation algorithm. The definitions of approximation ratio and of ρ (n)-

approximation algorithm apply for both minimization and maximization problems. 

 3.1.2 Existing approximation algorithm of vertex cover problem 

1  C ← Ø 

2  E′ ← E [G] 

3  while E′ ≠ Ø 

4   do let (u, v) be an arbitrary edge of E′ 

5    C ← C U {u, v} 

6    remove every edge in E′ incident on u or v 

7         return C 

3.1.3 Explanation of the approximate vertex cover algorithm 

 

Figure 3.1:  Explanation of the approximate vertex cover algorithm 
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The solution of above graph according to the approximate algorithm is {b, c, d, e, f, 

g}. This algorithm selects an arbitrary edge and removes the incident edges to it. This 

process continues until to cover all the vertexes. At first edge (b, c) is chosen from 

Fig. (b), then (b, a), (c, d) and (c, e) edges are discarded from the graph. Next arbitrary 

edge (e, f) is chosen and edge (e, d) is discarded. Lastly arbitrary edge (d, g) is 

chosen. After then no edge remains to be discarded. So the vertex cover set is {b, c, d, 

e, f, g}. 

3.1.4 Complexity Analysis of the approximate vertex cover algorithm 

Since the loop in algorithm 3, on lines (3-6) repeatedly picks an edge (u, v) from E′ 

adds its endpoints u and v to C, and deletes all edges in E′ that are covered by either u 

or v. The running time of this algorithm is O (E). 

3.1.5 The APPROX_VERTEX_COVER has a bound ratio 2 

Since this a minimization problem, we are interested in smallest possible c/c*. 

Specifically we want to show c/c* ≤ 2 = p(n). In other words, we want to show that 

APPROX-VERTEXCOVER algorithm returns a vertex-cover that is at most twice the 

size of an optimal cover. 

Proof: Let the set c and c* be the sets output by APPROX-VERTEX-COVER and 

OPTIMAL-VERTEX-COVER respectively. Also, let A be the set of selected edges in 

Fig. 1 

by line 4. Because, we have added both vertices, we get c = 2|A| but OPTIMAL-

VERTEXCOVER would have added one of two. => c/c* ≤ p(n) = 2. Formally, since 

no two edge in A are covered by the same vertex from c* (since, once an edge is 

picked in line 4, all other edges that are incident on its endpoints are deleted from E` 

in line 6) and we the lower bound: |c*| ≥ A---(1). On the size of an OPTIMAL-

VERTEX-COVER. In line 4 of figure-1, we picked both end points yielding an upper 

bound on the size of Vertex-Cover. |c| ≤ 2|A| since, upper bound is an exact in this 

case, we have 

|c| = 2|A| ----------------------------------( 2) 

Take |c|/2 = |A| and put it in equation ( 1) 

|c*| ≥ |c|/2 

|c*|/|c| ≥ 1/2 

|c*|/|c| ≤ 2 = p (n) 
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3.2 Greedy Technique [1, 3] 

This is a simple method used to solve optimization problems. The problems that are 

solved using the greedy method include finding the best order to execute a certain set 

of jobs on a computer, finding the shortest path in graph, etc. 

To solve an optimization problem, we look for a set of candidates constituting a 

solution that optimizes (minimizes or maximizes, as the case may be) the value of the 

objective function. A greedy algorithm proceeds step by step. Initially the set of 

chosen candidates is empty. Then at each step, we try to add to this set the best 

remaining candidates, our choice being guided by selection function. The selection 

function is dependent on the problem at hand. For example, the selection function in 

the case of minimum weight spanning tree picks an edge of minimum weight from the 

remaining edges, an object with maximum profit per unit weight out of the remaining 

objects is chosen for putting in the knapsack in the case of knapsack problem. If the 

enlarged set of chosen candidates is no longer feasible, we remove the candidate we 

just added: the candidate we tried and removed is never consider again. However, if 

the enlarged set is still feasible, then the candidate we just added stays in the set of 

chosen candidates from then on. Each time we enlarge the set of chosen candidates, 

we check whether the set now constitutes a solution to the problem. 

A popular method to construct successively space of solutions is greedy technique 

that is based on the evident principle of taking the (local) best choice at each stage of 

the algorithm in order to find the global optimum of some objective function. 

A technique used in solving optimization problems [12]. Typically, we are given a set 

of n inputs and the goal is to find a subset (or some output) that satisfies some 

constraints. Any subset (or output) that satisfies these constraints is called a feasible 

solution. In an optimization problem, we need to find a feasible solution that 

maximizes or minimizes a given objective function. A feasible solution that does this 

is called an optimal solution. The greedy technique works in stages, considering one 

input at a time (typically in some clever order). At each stage, a decision is made 

depending on whether it is best at this stage. For example, a simple criterion can be 

whether adding the current input will lead to an infeasible solution or not. Thus, a 

locally optimal choice is made in the hope that it will lead to a globally optimal 

solution. 
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3.2.1 Basic steps to finding efficient greedy algorithms: 

 Start by finding a dynamic programming style solution 

 Prove that at each step of the recursion, the min/max can be satisfied by a 

―greedy choice‖ (greedy substructure) 

  Show that only one recursive call needs to be made once the greedy choice is 

assumed. This is often natural when all the recursive calls are made by the 

min/max. 

  Find the recursive solution using the greedy choice 

 Convert to an iterative algorithm if possible 

More generally, taking the direct approach: 

  Show the problem is reduced to a sub problem via a greedy choice 

  Prove there is an optimal solution containing the greedy choice 

  Prove that combining the greedy choice with an optimal solution for the 

remaining sub problem yields an optimal solution 

Example: 

 For the MST problem: Prim‘s and Kruskal‘s algorithms 

 For the SSSP problem: Dijkstra‘s algorithm 

 Remember, Dijkstra only works for graphs with no negative edge weights. 

Usually heuristic algorithms are used for problems that cannot be easily solved. 

 

3.2.2 Greedy Algorithms of vertex-cover problem 

   Algorithm1: 

1. C ← Ø 

2. while E ≠ Ø  

3. Pick any edge e ∈E and choose an end-point v of e 

4. C ← C U {v} 

5. E ← E \ {e ∈ E : v ∈ e} 

6. return C 

3.2.3 Clever greedy algorithm [8] 

1. C ← Ø 

2. while E ≠ Ø  

3. Pick a vertex v ∈V of maximum degree in the current graph 

4. C ← C U {v} 
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5. E ← E \ {e ∈ E : v ∈ e} 

6. return C 

 

3.2.4 Greedy heuristic 

 Cover as many edges as possible (vertex with the maximum degree) at each stage and 

then delete the covered edges.  

 The greedy heuristic cannot always find an optimal solution!  

 The vertex-cover problem is NP-complete. 

 

 

       (a) A graph instance      (b) a vertex cover of size 5     (c) a vertex cover of   

                                                    obtained by the greedy      size 4 optimal solution 

                                                   algorithm                    

 

                     Figure 3.2: shows vertex cover by greedy algorithm 

3.3 Branch-and-Bound Algorithm [2, 6] 

Branch-and-bound (BB) is a general algorithm for finding optimal solutions of 

various optimization problems, especially in discrete and combinatory optimization. It 

consists of a systematic enumeration of all candidate solutions, where large subsets of 

fruitless candidates are discarded, by using upper and lower estimated bounds of the 

quantity being optimized. 

Branch-and-bound is a technique for exploring an implicit directed acyclic graph like 

the backtracking method. Optimal solutions to some problems like assignment of 

tasks to workers, etc. can be found using the technique of branch-and-bound. The 

branch-and-bound (BB) algorithm is a complete algorithm, meaning that it guarantees 

the exact solution even though the time complexity may increase exponentially with 

the graph size. As is also supported by the results presented in this paper, the 

algorithm is often outperformed by stochastic methods, which can often reliably 

locate the optimum after evaluating only a small portion of the search space. 
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The branch-and-bound algorithm recursively explores the full configuration space by 

deciding about the presence or absence of one node in the cover in each step of the 

recursion and recursively solving the problem for the remaining nodes. The full 

configuration space can be seen as a tree where each level decides about the presence 

or absence of one node and for each node there are two possible branches to follow; 

one corresponds to selecting the node for the cover whereas the other corresponds to 

ignoring the node. Technically, a covered node and all adjacent edges are removed, 

while an ignored node remains, but may not be selected in deeper levels of the 

recursion. The recursion explores the tree and backtracks when there are no more 

edges to cover or when the bounding condition is met, as described shortly. When 

backtracking, covered nodes are reinserted into the graph. Subsets of nodes that 

provide valid vertex covers are identified and the smallest of them is the minimum 

vertex cover. It is easy to see that in the worst case, the complexity of BB is upper-

bounded by the total number of nodes in the recursion tree, which is proportional to 

2
n
.i.e o (2

n
). 

The branch-and-bound vertex-cover algorithm goes through different partial vertex 

covers by marking vertices as either covered or uncovered at each step. It backtracks 

if it reaches a state, where all the available covering marks xN have been used. The 

goal is to find a vertex-cover of size at most xN. The algorithm terminates, when it 

has found a valid vertex-cover or if it has gone through all possible configurations. 

The process of the algorithm is described by an configuration tree. In the 

configuration tree a node specifies the current state of all the vertices of the graph. 

All vertices are marked as free at the start of the algorithm. The algorithm proceeds by 

marking a random free vertices as covered if the vertex has free or uncovered 

neighbors. The size of the largest allowed vertex-cover is xN, where x ∈ [0,1] and 

N=|V|. If the xN covering marks are not all used, the algorithm can go on with the tree 

traversal, otherwise it has to backtrack. If the algorithm returns to the node by 

backtracking, then the vertex is uncovered and the other branch in the configuration 

tree is taken. If a node‘s all neighbours are covered, it is first marked as uncovered. A 

simple bound is used to prune the configuration tree: don‘t mark a vertex uncovered, 

if it has uncovered neighbours. 
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The bound applied in the following algorithm uses the current vertex degree d(i), 

which is the number of uncovered neighbours at a specific stage of the calculation. By 

covering a vertex i the total number of uncovered edges is reduced by exactly d(i). If 

several vertices v1, v2, . .  , vk are covered, the number of uncovered edges is at most 

reduced by d(v1) + d(v2) + . . . . . . + d(vk). Assume that at a certain stage within the 

backtracking tree, there are uncover E edges uncovered and still k vertices to cover. 

Then a lower bound M for the minimum number of uncovered edges in the subtree is 

given by M= Max[0,E-max d(v1)+d(v2)+. . .+d(vk)] . 

The algorithm can avoid branching into a subtree if M is strictly larger than the 

number opt of uncovered edges in the best solution found so far. For the order, the 

vertices are selected to be (un-)covered within the algorithm, the following heuristic is 

applied: the order of the vertices is given by their current degree. Thus, the first 

descent into the tree is equivalent to the greedy heuristic presented before. Later, it 

will become clear from the results that this heuristic is indeed not a bad strategy. 

The following representation summarizes the algorithm for enumerating all 

configurations exhibiting a minimum number of uncovered edges. Let G= (V, E) be a 

graph, k the number of vertices to cover and uncov the number of edges to cover. 

Initially k= x and uncov= |E|. The variable opt is initialized with opt = |E| and contains 

the minimum number of uncovered edges found so far. The value of opt is passed via 

call by reference. At the beginning all vertices i ∈ V are marked as free. The marks 

are considered to be passed via call by reference as well (not shown explicitly). 

Additionally, it is assumed that somewhere a set of (optimum) solutions can be stored. 

 

3.3.1 Algorithm min-cover (G, k, uncov, opt) [7] 

begin 

if k = 0 then {leaf of tree reached?} 

begin 

if uncov < opt then {new minimum found?} 

begin 

opt := uncov; 

clear set of stored configurations; 

end; 

store configuration; 
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end; 

if bound condition is true (see text) then 

return; 

let i∈   V a vertex marked as free of maximal current degree; 

mark i as covered; 

k := k − 1; 

adjust degrees of all neighbours j of i : d(j) := d(j) − 1; 

min-cover(G, k, uncov − d(i), opt) {branch into ‗left‘ subtree}; 

mark i as uncovered; 

k := k + 1; 

(re)adjust degrees of all neighbours j of i: d(j):= d(j) + 1; 

min-cover (G, k, uncov, opt) {branch into ‗right‘ subtree}; 

mark i as free; 

end 

In the actual implementation, the algorithm does not descend further into the tree as 

well, when no uncovered edges are left. In this case, the vertex covers of the 

corresponding subtree consist of the vertices covered so far and all possible selections 

of k vertices among all uncovered vertices. 

Finally, we note that using the concepts of restarts one can also turn a complete 

backtracking algorithm into a (possibly) faster incomplete one.. The algorithm must 

be randomized, for applying restarts. Hence the choice which vertex is treated next is 

performed in some random way, similar to the generalized heuristic presented above. 

By applying many restarts, rare events become important: on one hand, the latter may 

have exponentially smaller search trees, i.e. in this case the algorithm by chance does 

not need to backtrack as long as usual. On the other hand, events of this type are 

exponentially rare. Balancing the exponential gain due to the smaller search tree 

against the exponential loss due to large number of restarts required to find such an 

event, an optimal backtracking (i.e. running) time per restart can be found. 
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3.4 Genetic Algorithm [4] 

Genetic algorithm is an optimization technique based on the natural evolution. It 

maintains a population of strings, called chromosomes that encode candidate solutions 

to a problem. The algorithm selects some parent chromosomes from the population 

set according to their fitness value, which are calculated using fitness function. The 

fittest chromosomes have more chances of selection for genetic operations in next 

generation. Different types of genetic operators are applied to the selected parent 

chromosomes; possibly according to the probability of operator, and next generation 

population set is produced. In every generation, a new set of artificial creatures is 

created using bits and pieces of the fittest chromosomes of the old population. 

Although GA is probabilistic, in most cases it produces better population compared to 

their parent population because selected parents are the fittest among the whole 

population set, and the worse chromosomes die off in successive generations. This 

procedure is continued until some user defined termination criteria are satisfied. 

In the genetic algorithm (GA), use the same representation of candidate solutions and 

the same repair operator like local heuristic. GA starts by generating a random 

population of candidate solutions. At each iteration, a population of promising 

solutions is first selected. Variation operators are then applied to this selected 

population to produce new candidate solutions. Specifically, crossover is applied to 

exchange partial solutions between pairs of solutions and mutation is used to perturb 

the resulting solutions. Here uniform crossover and bit-flip mutation is used to 

produce new solutions. The new solutions are substituted into the original population 

using restricted tournament replacement (RTR) [18]. The run is terminated when the 

termination criteria are met. 

 GA applies variation operators inspired by natural evolution and genetics. The fitness 

function plays an important role in GA because it is used to decide how good a 

chromosome is.  Fitness function is the number of vertices used to cover all the edges 

of the graph. M= 𝑉𝑖𝑣
𝑖=1  where Vi=1 if Vi ∈Vcover  else 0 

In HGA, one offspring is produced from two parent chromosomes. So, in that way 

best 50% chromosomes will directly go in the next generation using reproduction. All 

the chromosomes are used to create offspring using heuristic vertex crossover 

operator (HVX). Because we believe that each chromosome has some important 
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genes, which may become useful to obtain global optimal solution. Then mutation 

operator is applied to offspring. Mutation is used to avoid local minima and it should 

be applied on all the offspring. 

3.4.1 How genetic algorithm works 

A genetic algorithm is generally started with a randomly generated population of 

individuals. These individuals are potential solutions of the problem under study. 

Three genetic operators, namely, selection, crossover and mutation work on these 

individuals [20]. A selection method is used to select the individuals according to 

their values, the selected individuals reproduce the nest generation. The crossover 

operator recombines the individuals selected for reproduction with a pre-specified 

probability of crossover. The mutation operator induces changes in the chromosomes 

by complementing each bit of an individual with a pre-specified probability of 

mutation.   

Let G = (V, E), where G is undirected graph, V is the set of vertices and E denotes the 

set of edges. VT and ET are vertex table and edge table respectively, v are vertices 

(genes) of chromosome; P1 and P2 are two parent chromosomes selected for 

crossover; in our case set of vertices for vertex cover. V’ is the solution for vertex 

cover. 

3.4.2 Algorithm HVX [10] 

begin 

V’ = { } 

create tables VT and ET 

VT = (F(v), N(v)), where F(v) is the frequency of the vertex v in P1 and P2, 

N(v) is the degree of vertex v in G, for ∀ v ∈P1 and ∀ v ∈ P2  

ET = E (x, y) for ∀ E∈ G 

while ET <> { } do 

select v1 ∈ VT such that N(v1) > N(v) for  ∀ v ∈VT. If more than 

one vertex has same number of degree then select that vertex, whose 

frequency (F(v1)) is high. If still more than one vertex is candidate 

for selection then select any vertex randomly. Say v1 

ET = ET — {E(x, y)  : x = v1 or y = v1)} 
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V’ = V’ — {v1} 

end while 

return V’ 

end 

3.4.3 Explanation of genetic algorithm 

Graph – 1 (Fig.3.3) is used to show how HVX works. Initially chromosomes are 

generated randomly by selecting vertices one by one such that all the edges are 

covered. In the successive generations, two chromosomes are selected on the basis of 

fitness for the HVX. Suppose for Graph -1, two parent chromosomes P1, P2 are as 

shown below, 

                                              P1 = {1, 3, 4, 6} P2 = {1, 2, 3, 4} 

                         

                  Figure 3.3: Graph-1 with 6 vertices and 9 edges 

Now follow the procedure HVX as per below to produce offspring, 

1. Create VT (Table 1) and ET (Table 2) 

2. Select vertex with highest N (v) from VT. As shown in Table 3, for Run-1, it is 

vertex 3 

3. Remove all the edges from ET, which are connected to vertex 3 

4. Add 3 to V‘ 

Repeat this procedure until ET becomes empty and N(v) = 0 for ∀ v ∈VT 
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Table 3.1: Vertex Table (VT) for Graph-1 
Vertex (v) Frequency of Vertex in Parents 

F(v) 

Number of Edges Connected 

to the vertex N(v) 

1 2 4 

2 1 4 

3 2 5 

4 2 3 

5 0 2 

6 1 2 
 

Table3. 2: Edge Table (ET) for Graph-1 

Vertex      

1 2 3 4 5  

2 1 3 4 6  

3 1 2 4 5 6 

4 1 2 3   

5 1 3    

6 2 3    

 

 

Table 3.3: How HVX works is shown 

Vertex 

(V) 
F(v) N(v) Run 1 v1 = 3 

V‘={3} 

N1(v1) 

Run 2 v1 = 1 

V‘= {3,1} 

N2(v1) 

Run 3 v1 = 2 

V‘ = {3,1,2} 

N3(v1) 

1 2 4 3 0 0 

2 1 4 3 2 0 

3 2 5 0 0 0 

4 2 3 2 1 0 

6 1 2 1 1 0 

 

3.5 Linear Programming Formulation [13] 

Linear Programming is one of the most widely used and general techniques for 

designing algorithms for NP-hard problems. 

Def: A linear program is a collection of linear constraints on some real-valued vari- 

ables with a linear objective function. 

Every point in the feasible region is a feasible point, i.e., it is a pair of values that 

satisfy all the constraints of the program. The feasible region is going to be a polytope 

which is an n-dimensional volume all faces of which are at. The optimal solution is 
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either a minimum or a maximum, always occurs at a corner of the polytope (feasible 

region). The extreme points (corners) are also called basic solutions. 

                             

   Figure 3.4: The feasible region in linear programming problem. 

Linear programs can be solved in polynomial time. If you have n variables and m 

constraints, then the linear program can be solved in time polynomial in n and m. 

One way to solve a linear program is to: 

1. Enumerate all extreme points of the polytope. 

2. Check the values of the objective at each of the extreme points. 

3. Pick the best extreme point. 

The good thing about Linear Programs is that they give us a lower bound to any NP-

hard problem. If we take the NP-hard problem and reduce it to an Integer Program, 

relax the Integer Program to a Linear Program and then solve the Linear Program, the 

optimal solution to the Linear Program is a lower bound to the optimal solution for 

the Integer Program (and thus the NP-hard problem). This is a very general way to 

come up with lower bounds. Coming up with a good lower bound is the most 

important step to coming up with a good approximation algorithm for the problem. So 

this is a very important technique. Most of the work involved in this technique is 

coming up with a good reduction to Integer Programming and a good rounding 

technique to approximate the optimal fractional solution. 

A linear program formulation (LP) for the vertex-cover problem can be written as 

follows. 

Given: G = (V, E) with weights w: V → ℝ+ 

Goal: Find the minimum cost subset of vertices such that every edge is incident on 

some vertex in that subset. 
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1. Reducing Vertex Cover to an Integer Program 

Let the variables be: 

xv for v ∈ V where xv = 1 if v ∈ V C and xv = 0 otherwise. 

Let the constraints be: 

For all (u, v) ∈ E, xu + xv ≥1 (each edge has at least one vertex) 

For all v ∈ V, xv ∈ {0, 1} (each vertex is either in the vertx cover or not) 

We want to minimize  v Wv .Xv (the total weight of the cover) 

Note that all the constraints except the integrality constraints are linear and the 

objective function is also linear because the wv are constants given to us. Thus this is 

an Integer Linear Program. 

2. Relax the Integer Program to a Linear Program 

Now relax the integrality constraint xv  ∈ {0, 1} to xv∈ [0, 1] to obtain a Linear 

Program. 

3. Find the optimal fractional solution to the Linear Program 

Say x
*
 is the optimal fractional solution to the Linear Program. 

 

Here is a 2-approximation for the problem of weighted vertex cover. So for this 

problem: 

Given: A graph G (V, E) with weight on vertex v as Wv. 

Goal: To find a subset   V‘  V  

Goal: To find a subset   V‘  V such that each edge e ∈ E has an end point in V‘ and  

 Wv𝑣∈ V’  is minimized. 

The Linear Program relaxation for the vertex cover problem can be formulated as: 

The variables for this LP will be xv for each vertex v. So objective function is  

                                                  Min  Wv𝑣   

Subject to the constraints that    xu + xv ≥1 ∀ (u, v) ∈ E 

                                                        xv ≥0 ∀∈ E  

The Dual for this LP can be written with variables for each edge e∈ E as maximizing 

its objective function:      

                                                Max Yve∈ E       

  

Subject to the constraints:         Yuv v:(u,v) ∈ E  

                                                Ye ≥ 0 ∀∈ E 
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These constraints in the linear program correspond to finding a matching in the graph 

G and so the objective function becomes finding a maximum matching in the graph. 

Hence, this is called the Matching LP. 

3.6 Basic Primal-Dual Algorithm [14] 

A primal-dual algorithm is an algorithm that starts with a feasible dual solution and an 

infeasible primal one. Throughout its execution such an algorithm improves the dual-

objective function value of the kept dual solution and it reduces the degree of 

infeasibility of the primal one at the same time. The algorithm terminates as soon as 

the primal solution is feasible. The final dual solution is used as a lower-bound for the 

optimum solution value by means of weak duality. 

1. Start with x = 0 (variables of primal LP) and y = 0 (variables of dual LP). The 

conditions that: 

• y is feasible for Dual LP. 

• Primal Complementary Slackness is satisfied. 

are invariants and hence, hold for the algorithm. But the condition that: 

• Dual Complementary Slackness is satisfied. 

might not hold at the beginning of algorithm.  x does not satisfy the primal LP as yet. 

2. Raise some of the ye‘s, either simultaneously or one-by-one. 

3. Whenever a dual constraint becomes tight, freeze values of corresponding y‘s and 

raise value of corresponding x. 

4. Repeat from Step 2 until all the constraints become tight. 

 Now let us consider the primal-dual algorithm for vertex cover. 

3.6.1 Primal-Dual Algorithm for Vertex Cover 

1. Start with x = 0 and y = 0. 

2. Pick any edge e for which ye is not frozen yet. 

3. Raise the value of ye until some vertex constraint v goes tight. 

4. Freeze all ye‘s for edges incident on v. Raise xv to 1. 

5. Repeat until all ye‘s are frozen. 
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3.6.2 Explanation of the primal-dual algorithm 

This is an example of how this algorithm works on an instance of the vertex cover 

problem. We consider the following graph: 

Example: Given below is a graph with weights assigned to vertices as shown in the 

figure and we start with assigning ye = 0 for all edges e ∈ E. 

 

 

 

                      Figure 3.5: Explanation of primal-dual algorithm 

 

So the algorithm proceeds as shown in the figure above.  In steps (a)-(d), an edge is 

picked for which ye is not frozen and the value of ye is raised until the corresponding 

vertex constraint goes tight. All the edges incident on that vertex are then frozen and 

value of xv is raised to 1. 
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                              Figure 3.6: The Primal-dual solution  

 When all the ye‘s getting frozen, the algorithm terminates. So the Value 
of Primal=11 (3+4+2+2) and the Value of Dual=6(3+1+1+1).  

Hence ,     

                                 valp (x)≤ 2vald(y)   
So, primal-dual algorithm is a 2-approximation. 
 

3.6 Alom’s algorithm for Vertex Cover Problem [15] 

 Monjurul alom presented a new algorithm for vertex cover problem that provides the 

efficient approximate solution that is better than existing approximate algorithm, 

greedy technique and genetic algorithm. This vertex cover algorithm selects the vertex 

which has maximum number of edges incident to it. All the edges are discarded 

incident to that vertex. If more than one vertex have same maximum number of edges, 

this algorithm select that vertex which have at least one edge that is not covered by 

other vertices, which has maximum edge. This process is repeated until to cover all 

the vertices of the graph. This algorithm takes same time as the existing approximate 

algorithm takes but it provides the solution that is always better than the approximate 

solution. 

 

1. OPTIMAL_VT_COVER (E, V) {// E is an edge and V is an vertex 

2. V←; 

3. E′ ←E [G]  

4. While (E′ ≠ ) {  

5. M ← Choose vertex which has maximum incident edge; 

6. If (More than one vertex have maximum number of edges) then 
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7. M ← Choose that node which has at least one edge that is not covered by others 

                Which have maximum number of edges. 

8. V← VU M; 

9. Remove the all incident edges at vertex M; 

10. Count incident edge of new graph.} 

11. Return V} 

 

3.6.1 Explanation of the alom’s algorithm 

Step1: Counting incident edges of all vertices in Figure 3.7, we see a=1, b=2, c=3, 

d=4, e=3, f=2, g=1. 

           

         Figure 3.7: Example of undirected graph 

Step2: We find d has the maximum edges it is 4. Now discard all the edges incident to 

d given in Figure-3.8 

 

            

       Figure 3.8: Discarding the edges incident to vertex d  

 

 Step 3: Again in Figure 3.8, the maximum edges are 2 that is in vertex b, c, and e. 

But c has two edges that are covered by b and e. Now b and e both have two edges but 

they  have at least one edge that is not covered by other vertices c, which has 
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maximum edge, this algorithm select either b or e. Here we have chosen b. Remove 

all the edges incident to b we have only c, e and f exists in Figure 3.9. 

 

 

 

                 Figure 3.9: Discarding all the edges incident to vertex b  
 

 

Step 4: Counting edges of c, e and f in Figure 3.8 which represent c=1, e=2, f=1. Now 

select e and the final graph is given in Figure 3.10. 

      

           Figure 3.10: Graph representing the optimal vertex covering set  

3.6.2 Complexity analysis of Alom’s algorithm 
 

Since the number of iterations of the loop is at most E. So time complexity of this 

Algorithm is O (E), where E is total no.of edges. 
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                                                                                                                                CHAPTER 4 

                                                         PROBLEM STATEMENT 

 

The problem is to find a vertex-cover of minimum size of in a given undirected graph.  

The problem is NP-Hard. It is not very difficult to find an approximation algorithm 

for the vertex-cover problem that returns a solution that is near to optimal. The size of 

the vertex-cover returned by the algorithm is guaranteed to be no more than twice the 

size of an optimal vertex-cover.  

The minimum vertex cover problem is the optimization problem of finding a smallest 

vertex cover in a given graph. 

                   INSTANCE: Given a graph G 

                  OUTPUT: Smallest number k such that there is a vertex cover S for G of 

size k. 

If the problem is stated as a decision problem, it is called the vertex cover problem: 

 Equivalently, the problem can be stated as a decision problem: 

                INSTANCE: Graph G and positive integer k.  

                QUESTION: Is there a vertex cover S for G of size at most k? 

Using this strategy we have to find better algorithm which gives nearest solution to 

optimal. 

All existing algorithms for vertex-cover problem will be studied and analyzed and a 

new improved algorithm will be designed and implemented.   
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                                                                                CHAPTER 5  

                                                RESULTS AND DISCUSSIONS 

 

5.1 Analysis 

This section presents and discusses the analysis of all presented algorithms and 

complexity as shown below in the table. We illustrate the behavior of all studied 

algorithms such as approximation algorithm, greedy algorithm, genetic algorithm, 

alom‘s algorithm and primal-dual algorithm on the below graph.  

                           

                                  Figure 5.1: Graph (G) with 8 vertices 
 

                             Table 5.1: Adjacency list of graph (G) 

 

 
 

 

 

 

 

 

 

 

Vertex 

   (v) 

Number of edges 

connected to (v) 

  connected edges 

  a      4 b c e f 

  b      3 a d g  

  c      3 a d h  

  d      4 b c i j 

  e      3 a g k  

  f      3 a h k  

  g      3 b e i  

  h      3 c f j  

  i      3 d g k  

  j      3 d h k  

  k      4 e f i j 
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Table 5.2: Shows the comparison of all presented algorithms on graph (G) 

Algorith

m type 

Size of 

vertex-

cover 

Solution set Complexity          Remarks 

Branch 

and 

bound 

5 {a,d,g,h,k} It grows 

exponentially 

fast with 

problem size 

for all values 

of c. 

   

1. BB is complete algorithm that is 

ensured to find the minimum vertex 

cover. 

2. If no vertex cover of the desired size 

is found, some covering marks have to 

be removed and be placed elsewhere, i.e. 

the algorithm has to backtrack. 

Approxi

mation 

10 

6 

6 

{a,b,c,d,e,g,h,

i,j,k} 

{b,c,g,h,i,k} 

{b,c,e,f,i,j} 

 

     O(V+E) 

1. This gives different solutions but all 

solutions near to optimal. 

2. This is a polynomial-time 2-

approximation algorithm means that the 

solution returned by algorithm is at most 

twice the size of an optimal. 

Greedy 

 

Clever 

greedy 

7 

 

 

5 

{a,b,c,g,h,i,k} 

 

{a,d,g,h,k} 

O( V+E) 

 

 

O (logV) 

1. It is easy to find in some situations 

where this algorithm fails to yield a 

optimal solution. 

2. Greedy algorithm is not a 2-

approximation 

3. Clever greedy algorithm always gives 

solutions better than simple greedy.  

Genetic 6 {a,c,d,g,h,k} Time 

complexity 

measured by 

the overall 

number of 

candidate 

solutions 

examined until 

the optimum is 

found. 

1. GA is an optimization technique 

based on the natural evolution. 

2. GA fails to obtain consistent results 

for specific type of regular graphs. 

3. For large problems, the growth of the 

number of evaluations required by GA 

becomes faster. 

4. It gives better results when it is 

combined in to local optimization 

technique. 
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5.2 Alom’s extended algorithm for Vertex Cover Problem 

Alom‘s algorithm is extended in order to give the all possible vertex cover for 

undirected graph. 

The reason behind that for some larger graphs this algorithm may be fails to give 

exact optimal solution. This algorithm gives all minimal vertex covers and minimum 

vertex covers.  

This paper presents a formal description of the algorithm. Given a simple graph G 

with |V|= n vertices and |E|= m edges, this algorithm finds every possible minimal 

vertex cover. This is followed by a small example illustrating the steps of the 

algorithm. 

OPTIMAL-VERTEX-COVER (V, E) 

1. For i=1, 2, 3……n in turn 

2. G
'
 =V —{vi} and E —{e∈E: vi∈e} 

3. Apply the Algo1 on G
' 

4. VC=V
' ∪ {vi}. 

5. Return VC  

 

Primal-

dual 

  O(V log V+E) 1. It reduces the degree of infeasibility of 

the primal one at the same time. 

2. The algorithm terminates as soon as 

the primal solution is feasible. 

3. The final dual solution is used as a 

lower-bound for the optimum solution 

value by means of weak duality. 

 

Alom‘s  5 {a,d,g,h,k}          O(E) 1. It gives always optimal solution to the 

given graph. 

2. Complexity is same as with 

approximation algorithm. 

3. For larger graphs, may be this 

algorithm lost to give an optimal 

solution. 
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Algo1(V
'
 , E

' 
) { 

1. V
'
 ←  ø 

2. E
'
 ← E[G'

] 

3. While E
'≠ ø { 

4. Count incident edges of all vertices of graph G
'
 

5. Vm ← Choose a vertex which has maximum degree in the current graph; 

6. If (More than one vertex have maximum number of edges) then 

7. Vm ← Choose that vertex which has at least one edge that is not covered by 

others which have maximum number of edges. 

                 Otherwise choose an arbitrary edge. 

8. V
'
= V

'∪ Vm. 

9. Remove the all incident edges of vertex Vm } 

10. Return V
' 
 } 

                 

       Figure 5.2: Example to show the steps of algorithm 

   5.3 Explanation of the Alom’s extended algorithm 

Step1: Remove the vertex a (v1) and all incident edges of a (v1) from G. 

                      
                 Figure 5.3: Discarding all edges incident to a 
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Step2: Perform the Algo1 on G
'
 until all edges are removed. 

Step3: Counting incident edges of all vertices in Figure-5.3 b=3, c=3, d=3, e=2, 

f=2, g=3. 

  Here the vertices b, c, d, g have maximum degree, But d has three edges that is 

covered by b, c and g. Now b, c and g have three edges but they have at least one edge 

that is not covered by other vertices, which has maximum edge, this algorithm select 

b, c or g. Here b has chosen as an arbitrary edge and remove all incident edges to b. 

                      
               Figure 5.4: Discarding all edges incident to b 

 

Step4:  In fig5.4, c=2, d=2, e=2, f=2, g=3 choose g and discard all edges incident 

to g. 

                     
                Figure 5.5: Discarding all edges incident to g 

 

Step5: In fig5.5, c=2, d=1, e=1, f=0, now select c and remove all incident edges. 
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 Figure 5.6: Graph representing the optimal vertex covering set 

 

       Step6:  Return V
'
= {b, g, c} 

Step7:  Return VC= {a, b, c, g}      

Repeat the same procedure for i=2, 3, 4,5,6,7. Then we obtain    

Table 5.4: All possible vertex-covers 

 

vertex Vertex Name  Vertex cover 

V1 a {a,b,c,g} 

V2 b { a,b,c,g } 

V3 c { a,b,c,g } 

V4 d { a,b,d,e,f} 

V5 e { a,b,d,e,f} 

V6 f {a,c,d,e,f } 

V7 g { a,b,c,g } 

 

In this table, vertices V1, V2, V3, V7   produces minimum vertex cover and V4, V5, V6 

produces minimal vertex cover. 

 
5.4 Implementation 

The efficient algorithm may be applied to any simple graph and will always terminate 

in polynomial-time. Minimal vertex covers of a certain size will be found by applying 

this algorithm. Specifically, we prove that every graph with n vertices and maximum 

vertex degree must have a minimum vertex cover of size at most nn(+1)and 

that the algorithm will always find a vertex cover of at most this size. Furthermore, it 

is proved that this condition is the best possible in terms of n and by explicitly 

constructing graphs for which the size of a minimum vertex cover is exactly 

nn(+1).  Demonstrate the algorithm with a C++ program style. 

Implementation code is given in 43-45 pages. 
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                                                                                                                    CHAPTER 6 

                                                                            CONCLUSION   

 

This thesis analyzed performance of the branch-and-bound (BB) algorithm and 

several evolutionary algorithms on minimum vertex cover for standard classes of 

random graphs. In addition to branch-and-bound (BB), greedy algorithm, simple 

genetic algorithm (GA), primal dual algorithm (PDA) and alom‘s algorithm has been 

considered. In branch-and-bound technique, we calculated a bound on the possible 

value of any solution that might lie further on the graph. If the bound shows that any 

solution must necessarily be worse than the best solution found so far, then we need 

not go on exploring this part of the graph. The algorithm makes certain choices where 

to put covering marks. If no vertex-cover of the desired size is found, some covering 

marks have to be removed and be placed elsewhere, i.e. the algorithm has to 

backtrack. This is done in a symmetric way allowing investigation of the full 

configuration space.  

Sometimes the approximation algorithm gives larger solution since the algorithm runs 

by choosing the arbitrary edge of the graph. This is a polynomial-time 2-

approximation algorithm means that the solution returned by algorithm is at most 

twice the size of an optimal, since we do not know what the size of the optimal vertex 

cover is. 

The greedy algorithm gives solutions better than approximation algorithm. The 

algorithm always makes the choice that looks best at the moment. Clever greedy 

algorithm always takes the vertex with the highest degree, add it to the cover set, 

remove it from the graph, and repeats. But the greedy heuristic cannot always find an 

optimal solution. 

The genetic algorithm is slower than one local step of branch-and-bound. This is an 

optimization technique based on the natural evolution and this is fails to obtain 

consistent results for specific type of regular graphs. For large problems, the growth 

of the number of evaluations required by GA becomes faster. The heuristic vertex 

crossover (HVX) especially for minimum vertex cover problem, which works very 

well and converges fast to optimal solution. With the help of HVX and LOT (local 
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optimization technique), we can achieve optimal solution with less number of 

generation and population size. 

The primal dual algorithm is only for weighted graphs and this is a 2-approximation 

algorithm. It reduces the degree of infeasibility of the primal one at the same time. 

The algorithm terminates as soon as the primal solution is feasible. The main goal of 

the algorithm is to find a vertex cover of minimum total cost. The final dual solution 

is used as a lower bound for the optimum solution value by means of weak duality. 

In some cases, Greedy and genetic algorithms outperformed BB, which is not a 

surprising result because BB is a complete method that guarantees that the global 

optimum is found.  

 
Finally, the alom‘s algorithm is the efficient algorithm for the vertex-cover problem 

because it gives optimal solutions in most cases. In this algorithm also, we have to 

choose an arbitary edge when the condition is coincide. So, for some larger graphs we 

may lose the exact optimal solution by alom‘s algorithm. That‘s way the alom‘s 

algorithm is extended in order to give the all possible solutions i.e all minimum 

vertex-covers and all minimal vertex-covers. From these all possible solutions we can 

easily choose the exact optimal solution which we want. But the complexity is more 

and the extended alom‘s algorithm is implemented.  
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Implementation code 

//program to find minimal vertex covers for a given graph 

#include<stdio.h> 

#include<iostream.h> 

#include<conio.h> 

#include<process.h> 

#define dim 10  

   //enter dimension of edjacency matrix of graph 

void vertex_cover(int,int*); //prototype for vertex_cover 

int main() 

{ 

int i,j,*p,arr[dim][dim]; 

clrscr(); 

cout<<"enter matrix\n"; 

       //enter input as graph adjacency matrix 

for(i=0;i<dim;i++) 

  { 

  for(j=0;j<dim;j++) 

  cin>>arr[i][j]; 

  cout<<"\n"; 

  } 

p=&arr[0][0]; 

for(i=0;i<dim;i++) 

vertex_cover(i,p); 

getch(); 

return 0; 

}//end of main 

void vertex_cover(int v,int *q) 

        //this function produces several different vertex covers 

{ 

int a[dim][dim],count,max=0,flag,x=0,i,j; 

int degree[dim],vertices_maxdegree[dim],vc[dim],l=0,r; 

for(i=0;i<dim;i++) 

  { 

  for(j=0;j<dim;j++) 

    { 

    a[i][j]=*q; 

    q++; 

    } 

  } 

//remove the incident edges of correspanding vertex 

for(j=0;j<dim;j++) 

  { 

  if(a[v][j]==1) 

    { 

    a[v][j]=0; 

    a[j][v]=0; 

    } 

  } 

//until all edges are removed 

while(1) 

{ 

int k=0,flag=0; 
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// 

for(i=0;i<dim;i++) 

  { 

  count=0; 

  for(j=0;j<dim;j++) 

    { 

    if(a[i][j]==1) 

      { 

      flag++; 

      count++; 

      } 

    } 

   degree[i]=count; 

  } 

//if all edges are removed then stop 

if(flag==0) 

break; 

//find maximum degree 

max=degree[0]; 

for(i=1;i<dim;i++) 

  { 

  if(max<degree[i]) 

  max=degree[i]; 

  } 

//find vertices of maximum degree 

for(i=0;i<dim;i++) 

  { 

  if(max==degree[i]) 

  vertices_maxdegree[k++]=i; 

  } 

/*Choose that vertex which has at least one edge that is not covered by others 

  which have maximum number of edges. 

   Otherwise choose an arbitary edge.*/ 

 

for(i=0;i<k;i++) 

  { 

  x=0; 

  for(j=0;j<dim;j++) 

    { 

    if(a[vertices_maxdegree[i]][j]==1) 

      { 

      for(r=0;r<k;r++) 

        { 

        if(j==vertices_maxdegree[r]) 

        x++; 

        } 

      } 

    } 

  if(x<max) 

  break; 

  } 

if(i==k) 

i=0; 

vc[l++]=vertices_maxdegree[i]; 

//remove the incident edges of selected vertex 
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for(j=0;j<dim;j++) 

  { 

  if(a[vertices_maxdegree[i]][j]==1) 

   { 

   a[vertices_maxdegree[i]][j]=0; 

   a[j][vertices_maxdegree[i]]=0; 

   } 

  } 

}//end of while 

vc[l++]=v; 

//it prints the vertex cover 

cout<<"\n vertex cover of v="<<v+1; 

cout<<" {"; 

for(i=0;i<l;i++) 

  { 

  cout<<" "<<vc[i]+1; 

  } 

cout<<"}"; 

}//end of vertex_cover 
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