
Choosing the Efficient Algorithm for Vertex Cover

Problem

Thesis submitted in partial fulfillment of the requirements for the award of

degree of

Master of Engineering

in

 Computer Science & Engineering

By

K.V.R.Kumar

 (80732008)

 Under the supervision of

Dr. Deepak Garg

Asst. Professor

CSED

 COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

 THAPAR UNIVERSITY

 PATIALA – 147004

 JUNE 2009

i

ii

iii

 ABSTRACT

The vertex cover (VC) problem belongs to the class of NP-complete graph theoretical

problems, which plays a central role in theoretical computer science and it has a

numerous real life applications. We are unlikely to find a polynomial-time algorithm for

solving vertex-cover problem exactly. Vertex-cover exhibits a coverable–uncoverable

phase transition. The relationship of vertex-cover with other NP-complete problems is

thoroughly studied in this work. This thesis work also analyzes the various algorithms

on minimum vertex cover for standard classes of random graphs. The performance of

all algorithms is compared with the complexity and the output solution that of the

branch-and-bound problem solver (BB), approximation algorithm, greedy algorithm,

simple genetic algorithm (GA), primal-dual based algorithm (PDB) and the alom’s

algorithm. The results indicate that all algorithms give near optimal solutions. The

performance differences of all algorithms on a graph are relatively small to obtain a

vertex-cover. For undirected graphs, better performance is achieved by alom’s

algorithm and for weighted graphs, better performance is achieved by primal-dual based

approach. Additionally, alom’s algorithm is extended in order to give the all possible

vertex-covers of a graph and the algorithm is implemented in c++.

iv

 TABLE OF CONTENTS

CERTIFICATE...i

ACKNOWLEDGEMENT...ii

ABSTRACT...iii

TABLE OF CONTENTS..iv

LIST OF FIGURES..vi

LIST OF TABLES...vii

LIST OF PUBLICATIONS...viii

1. INTRODUCTION..1

 1.1 Introduction..1

2. VERTEX-COVER RELATIONS...4

 2.1 Clique problem...4

 2.2 Independent-set problem..4

 2.3 NP-Completeness and reducibility...5

 2.4 Structure of NP-completeness ...…..7

 2.5 Theorem: VERTEX-COVER  NPC……………………….………….……8

 2.6 Vertex Cover Heuristics……………………………………………………...9

 3. ALGORITHMS FOR VERTEX-COVER PROBLEM....................................11

 3.1 Concepts of Approximation algorithm...11

 3.1.1 Performance ratios for approximation algorithms ……...…....….…11

 3.1.2 Existing approximation algorithm …………………………….…...12

 3.1.3 Explanation of the approximate vertex cover algorithm ……….….12

 3.1.4 Complexity Analysis of the approximate vertex cover algorithm.....13

 3.1.5 The APPROX_VERTEX_COVER has a bound ratio 21..................13

 3.2 Greedy Technique...14

 3.2.1 Basic steps to finding efficient greedy algorithms..............................15

 3.2.2 Greedy Algorithm...15

 3.2.3 Clever greedy algorithm..15

v

 3.2.4 Greedy heuristic……………………………………………..16

 3.3 Branch-and-bound Algorithm..16

 3.3.1 Algorithm min-cover..18

 3.4 Genetic Algorithm…………………………………………………….…….20

 3.4.1 How genetic algorithm works..21

 3.4.2 Algorithm HVX.. 21

 3.4.3 Explanation of genetic algorithm...22

 3.5 Linear Programming Formulation……………………………………..…...23

 3.6 Basic Primal-Dual Algorithm ……………………………………………..26

 3.6.1 Primal-Dual Algorithm for Vertex Cover……….………………….26

 3.6.2 Explanation of primal-dual algorithm………………………………27

 3.6 Alom’s algorithm for Vertex Cover Problem…………...…...…………….28

 3.6.1 Explanation of the optimal vertex cover algorithm…….…………..29

 3.6.2 Complexity Analysis of Alom’s Algorithm…………….………….30

4. PROBLEM STATEMENT.. 31

5. RESULTS & DISCUSSION... 32

6. CONCLUSION.. 38

ANNEXURES

I. References.. 40

II List of publications…………………………………………………………... 46

vi

 LIST OF FIGURES

Figure 1.1: graph for computer network…………………………………….….…..3

Figure 1.2: vertex-cover solution for computer network………………….………..3

Figure 1.3: Shows different vertex vectors…………………………………..……….…..3

Figure 2.1: Relationship with other NP-problems...5

Figure 2.2: Structure of NP-completeness proofs…………………………..............7

Figure 2.3: Reducing CLIQUE to VERTEX_COVER... 8

Figure 3.1: Explanation of the approximate vertex cover algorithm........................12

Figure 3.2: shows vertex cover by greedy algorithm..16

Figure 3.3: Graph-1 with 6 vertices and 9 edges.. 22

Figure 3.4: The feasible region in linear programming problem……….…………24

Figure 3.5: Explanation of primal-dual algorithm ………………………………...27

Figure 3.6: The Primal-dual solution...28

Figure 3.7: Example of undirected graph ... 29

Figure 3.8-3.10: Explanation by alom’s algorithm………………………………. 29

Figure 5.1: Graph (G) with 8 vertices………………………………………..……32

Figure 5.2: Example to show the steps of algorithm ………………………..……35

Figure 5.3-5.6: Explanation of the Alom’s extended algorithm ………….………35

vii

 LIST OF TABLES

Table 3.1 Vertex Table (VT) for Graph-1...23

Table 3.2: Edge Table (ET) for Graph-1...23

Table 3.3: How HVX works is shown... 23

Table 5.1: Adjacency list of graph (G)……………………………………….…32

Table 5.2: shows the comparison of all algorithms on graph (G)……………….33

 ABSTRACT

The vertex cover (VC) problem belongs to the class of NP-complete graph theoretical

problems, which plays a central role in theoretical computer science and it has a

numerous real life applications. We are unlikely to find a polynomial-time algorithm

for solving vertex-cover problem exactly. Vertex-cover exhibits a coverable–

uncoverable phase transition. The relationship of vertex-cover with other NP-

complete problems is thoroughly studied in this work. This thesis work also analyzes

the various algorithms on minimum vertex cover for standard classes of random

graphs. The performance of all algorithms is compared with the complexity and the

output solution that of the branch-and-bound problem solver (BB), approximation

algorithm, greedy algorithm, simple genetic algorithm (GA), primal-dual based

algorithm (PDB) and the alom’s algorithm. The results indicate that all algorithms

give near optimal solutions. The performance differences of all algorithms on a graph

are relatively small to obtain a vertex-cover. For undirected graphs, better

performance is achieved by alom’s algorithm and for weighted graphs, better

performance is achieved by primal-dual based approach. Additionally, alom’s

algorithm is extended in order to give the all possible vertex-covers of a graph and the

algorithm is implemented in c++.

1

 CHAPTER 1

 INTRODUCTION

 Vertex cover problem is a NP-complete problem. If a problem is NP-complete, we

are unlikely to find polynomial-time algorithm for solving it exactly, but this does not

imply that all hope is lost. There are two approaches to getting around NP-

completeness. First if the actual inputs are small, an algorithm with exponential

running time may be perfectly satisfactory. Second, it may still possible to find near

optimal solutions in polynomial time. In practice near optimality is often good

enough. An algorithm that returns near-optimal solutions is called an approximation

algorithm.

In computer science, the vertex cover problem or node cover problem is one of

Karp's 21 NP-complete problems. It is often used in complexity theory to prove NP-

hardness of more complicated problems.

The classical minimum vertex-cover problem involves graph theory and finite

combinatorics and is categorized under the class of NP-complete problems in terms of

its computational complexity (Garey & Johnson, 1979) [3]. Minimum vertex cover

has attracted researchers and practitioners because of the NP-completeness and

because many difficult real-life problems can be formulated as instances of the

minimum vertex cover. Examples of the areas where the minimum vertex-cover

problem occurs in real world applications are communications, civil and electrical

engineering, and bioinformatics. However, only few studies exist that analyzes the

performance of evolutionary algorithms.

Definition: Consider a graph G= (V, E) where V and E are accordingly vertex and

edges. A vertex cover of an undirected graph is a subset V⊆V such that if (u, v) is

an edge of G, Then either uVor vVor both.

The size of a vertex cover is the number of vertices in it. The vertex cover problem is

to find a vertex cover of minimum size in a given undirected graph. Such a vertex

cover is called an optimal vertex cover. Coreman describes an approximation

algorithm with O (E) time for vertex cover problem is given. This algorithm finds the

approximate solution. An algorithm for ―crown reductions for the Minimum

2

Weighted Vertex Cover problem‖ is given [1]. In this algorithm how crown

decompositions and strong crown decompositions can be computed in polynomial

time are described.

There are two versions of the minimum vertex cover problem: the decision version

and the optimization one. In the decision version, the task is to verify for a given

graph whether there exists a vertex cover of a specified size. On the other hand, in the

optimization version of this problem, the task is to find a vertex cover of minimum

size. To illustrate minimum vertex cover, consider the problem of placing guards

(Weigt & Hartmann, 2000) in a museum where corridors in the museum correspond

to edges and the task is to place a minimum number of guards so that there is at least

one guard at the end of each corridor.

Minimum vertex cover is one of the Karp‘s 21 diverse combinatorial and graph

theoretical problems (Karp, 1972), which were proved to be NP-complete. Minimum

vertex cover is a special case of the set cover problem (Thomas H. Cormen & Stein,

2001) which takes as input an arbitrary collection of subsets S = (S1, S2, .., Sn) of the

universal set V, and the task is to find a smallest subset of subsets from S whose union

is V.

The minimum vertex cover problem is also closely related to many other hard graph

problems and so it interests the researchers in the field of design of optimization and

approximation algorithms. For instance, the independent set problem (Karp, 1972;

Garey & Johnson, 1979) is similar to the minimum vertex cover problem because a

minimum vertex cover defines a maximum independent set and vice versa. Another

interesting problem that is closely related to the minimum vertex cover is the edge

cover which seeks the smallest set of edges such that each vertex is included in one of

the edges.

Recently, the attention of physicists was drawn to the study of NP-complete problems

like vertex cover and satisfiability. The reason is that, when studied on suitable

random ensembles, these problems exhibit phase transitions in the solvability

(Monasson, Zecchina, Kirkpatrick, Selman,& Troyansky, 1999; Weigt & Hartmann,

2000b; Hartmann & Rieger, 2004), which often coincide which peaks in the typical

computational complexity or changes of the typical complexity from exponential to

polynomial or vice versa.

3

Suppose that to improve the performance of a computer network, you want to collect

statistics on packets being transmitted. Draw a graph where the vertices are

computers/routers, and edges are communication links:

 Figure 1.1: graph for computer network

Collecting statistics can slow down the network, and requires installing custom

software etc. So, we want to monitor the traffic on as few nodes as possible. We

choose as small a set of nodes as possible on which to install the monitoring software,

so that each communication link has monitoring software on at least one end,

 Figure 1.2: vertex-cover solution for computer network

If we install the monitoring software on the black nodes, every communication link

has at least one end black. This is the vertex cover.

Example: In the figure1.3, {1, 3, 5, 6} is an example of a vertex cover of size 4.

However, it is not a smallest vertex cover since there exist vertex covers of size 3,

such as {2, 4, 5} and {1, 2, 4}.

 Figure 1.3: Shows different vertex vectors.

4

 CHAPTER 2

 VERTEX-COVER RELATIONS

2.1 Clique problem [1]

Def: A clique in an undirected graph G= (V, E) is a subset V'  V of vertices, each

pair of which is connected by an edge in E. In other words, a clique is a complete

subgraph of G. The size of a clique is the number of vertices it contains. The Clique

problem is the optimization problem of finding a clique of maximum size in a graph.

As a decision problem, we ask simply whether a clique of a given size k exists in the

graph.

Instance: a graph G= (V, E) and a positive integer k ≤ |V|.

Question: is there a clique V' ⊆ V of size ≥ k?

2.2 Independent-set problem [1]

Def: An independent set of a graph G= (V, E) is a subset V' ⊆ V of vertices such that

each edge in E is incident on at most one vertex in V'. The independent set problem is

to find a maximum-size independent set in G.

Instance: a graph G= (V, E) and a positive integer k ≤ |V|.

Question: is there an independent set of size ≥ k?

The following are equivalent for G= (V, E) and a subset V' of V and 𝐺 = (V,𝐸), where

𝐸 = {(u, v): u, v  V, u≠ v, and (u, v) ∉ E}

(a). V' is a clique of G.

(b). V' is an independent of 𝐺

(c). V—V' is a vertex-cover of 𝐺

5

 (a) (b) (c)

Figure 2.1: Relationship of VC with other NP-problems. (a) Clique V' = {u, v, x, y}

(b) Independent set V'= {u, v, x, y} (c) Vertex-cover V—V'= {w, z}

2.3 NP-Completeness and reducibility

When analyzing the complexity of algorithms, it is often useful to recast the problem

into a decision problem. By doing so, the problem can be thought of as a problem of

verifying the membership of a given string in a language, rather than the problem of

generating strings in a language. The complexity classes P and NP differ on whether a

witness is given along with the string to be verified. P is the class of algorithms which

terminate in an amount of time which is O (n) where n is the size of the input to the

algorithm, while NP is the class of algorithms which will terminate in an amount of

time which is O (n) if given a witness w which corresponds to the solution being

verified.

NP-complete problems arise in diverse domains: Boolean logic, graphs, arithmetic,

network design, sets and partitions, storage and retrieval, sequencing and scheduling,

mathematical programming, games and puzzles and more. We shall use the reduction

methodology to provide NP-completeness proofs for a variety of problems drawn

from graph theory and set partitioning. There exist some problems which can be used

to solve other problems, as long as a way of solving them exists, and a way of

converting instances of other problems into instances of the problem with a known

solution also exists. When talking about decision problems, a problem A is said to

reduce to problem B if there exists an algorithm which takes as input an instance of

problem A, and outputs an instance of problem B which is guaranteed to have the

6

same result as the instance in problem A, i.e. if LA is the language of problem A, and

LB is the language of problem B, and if there is an algorithm which translates all l

LA into lB  LB and which translates all l' ∉ LA into l'B ∉ LB then problem A reduces

to problem B.

Polynomial-time reductions provide a formal means for showing that one problem is

at least as hard as another, to within a polynomial-time factor. That is, if L1 ≤p L2 i.e a

language L1 is polynomial-time reducible to a language L2, then L1 is not more than

a polynomial factor harder than L2 , which is why the ―less than or equal to‖ notion

for reduction in mnemonic. We can now define the set of NP-complete languages,

which are the hardest problems in NP.

For a particular type of computational problems, namely, optimization problems-

where one looks for an optimal among all plausible solutions. Some optimization

problems are known to be NP-hard, for example, finding a largest size independent

set in a graph [Coo71, Kar72], or finding an assignment satisfying the maximum

number of clauses in a given 3CNF formula (MAX3SAT)[1].

A proof that some optimization problem is NP-hard, serves as an indication that one

should relax the specification. A natural manner by which to do so is to require only

an approximate solution one that is not optimal, but is within a small factor C > 1 of

optimal. Distinct optimization problems may differ significantly with regards to the

optimal (closest to 1) factor Copt to within which they can be efficiently approximated.

Even optimization problems that are closely related may turn out to be quite distinct

with respect to Copt. Let the Maximum Independent Set be the problem of finding, in a

given graph G, the largest set of vertices that induces no edges. Let the Minimum

Vertex Cover be the problem of finding the complement of this set (i.e. the smallest

set of vertices that touch all edges). Clearly, for every graph G, a solution to

Minimum Vertex Cover is (the complement of) a solution to Maximum Independent

Set. However, the approximation behavior of these two problems is very different, as

for Minimum Vertex Cover the value of Copt is at most 2.

One of these problems, and maybe the one that underscores the limitations of known

technique for proving hardness of approximation, is Minimum Vertex Cover. Proving

hardness for approximating Minimum Vertex Cover translates to obtaining a

7

reduction of the following form. Begin with some NP-complete language L, and

translate ‗yes‘ instances x ∈ L to graphs in which the largest independent set consists

of a large fraction (up to half) of the vertices. ‗No‘ instances x ∉ L translate to graphs

in which the largest independent set is much smaller. Previous techniques resulted in

graphs in which the ratio between the maximal independent set in the ‗yes‘ and ‗no‘

cases is very large.

There are the steps to show the problem is NP-complete

1. Show that the problem is in NP,

2. Reduce an NP-complete problem to it, and

3. Show that the reduction is a polynomial time function.

2.4 Structure of NP-completeness [1]

CIRCUIT-SAT is the first NP-complete problem. All proofs ultimately follow by

reduction from the NP-completeness of CIRCUIT-SAT

 Figure 2.2: Structure of NP-completeness proofs

8

2.5 Theorem: VERTEX-COVER  NPC [1]

Proof We prove VERTEX-COVER  NP first. Let the certificate to be a set of

vertices V'  V. The verification algorithm checks if the following are true: (1) |V'| = k.

(2) For every edge (u, v)  E, either u V' or v  V'. Obviously, this verification can

be done in polynomial time.

Now, we prove VERTEX-COVER  NP-hard by showing CLIQUE p VERTEX-

COVER. Let G (V, E) be the graph for the CLIQUE problem. We construct a new

graph 𝐺 for the VERTEX-COVER problem. The construction of G‘ is easy. It is the

complement graph of G. That is 𝐺 (V, 𝐸).

v u

w z

y x

v u

w z

y x

(a) G G)b(

Figure 2.3: Reducing CLIQUE to VERTEX_COVER. (a) An undirected graph G= (V,

E) with clique V'= {u, v, x, y}. (b) The graph 𝐺 produced by the reduction algorithm

that has vertex cover V– V' = {w, z}.

Let |V| = n, k' = n – k.

We shall show that G has a k-clique if and only if 𝐺 has a vertex cover with size k'.

Suppose G has a k-clique V'  V. We claim that V – V' is a vertex-cover of 𝐺 . To see

this, look at edge (u, v)  E'. Obviously, (u, v)  E. So, either u or v will not belong to

V'. Then, u or v must belong to V – V'. So, V – V' is a vertex cover of 𝐺 with size |V-

V'| = n - k = k'.

9

 Conversely, suppose𝐺 has a vertex-cover V'  V, where |V'| = n - k = k'. Then, for

any u, v  V, if (u, v)  E', then u V' or v  V' or both. This implies that if u V'

and v  V', then (u, v)  E' or (u, v)  E. Therefore, V – V' is a clique of G with size

|V-V'| = n – k' = k.

 Thus, we have just proved CLIQUE p VERTEX-COVER.

So, VERTEX-COVER  NPC.

2.6 Vertex Cover Heuristics

Many traditional heuristics for vertex cover are known. Perhaps the most obvious is

the greedy algorithm, in which the vertex of maximum remaining degree (incident on

the maximum number of edges) is repeatedly removed from the graph and added to

the cover until all edges are covered. While intuitive, the algorithm actually performs

poorly on many classes of graphs and has no fixed performance bounds. An

alternative algorithm is focused on finding a maximal matching in the graph: while

edges remain, choose an arbitrary edge, add both endpoints to the cover, and remove

both vertices from the graph. Because each selected edge must be covered by at least

one of its endpoints, the algorithm has a fixed performance bound of 2, i.e., the

resulting cover is at most twice the optimum cover. A number of other traditional

approaches to VC, typically with performance bounds close to 2, have been reported

and are discussed in [4]. A local-ratio approximation algorithm with best known

bound of 2- log(logn2logn) relies on the repeated removal of sub-graphs, specifically

small odd cycles or triangles.

Pramanick describes a novel stochastic optimization approach to VC as a "practical

method for computing vertex covers for large graphs‖ [6]. Parallel Dynamic

Interaction (PDI) is an inherently parallel optimization methodology that exploits the

non-deterministic behaviour of shared-memory multiprocessors as the stochastic input

to the algorithm. Individual processors search for covers in subsets of the complete

graph. Global covers are formed by dynamic interaction between processors

(reminiscent of a commodities trading process), in which the nondeterministic time of

completion resolves competition between local solutions. Parallel dynamic interaction

displayed very strong empirical performance on two problem classes (described later)

when compared against traditional algorithms. Neural network and genetic algorithm

10

approaches to VC provide improved quality solutions on certain of the benchmark

problems used in the PDI study, albeit with significantly increased computation times.

The importance of the encoding of the underlying problem is well-known for EA

(Evalutionary Algorithms) optimization approaches. In the case of vertex cover and

related problems, the most obvious approach is a direct encoding in which each bit of

a binary chromosome of length |V| defines the presence or absence of the

corresponding vertex in the cover. Most previously reported genetic algorithms for

vertex-cover, independent set, maximum clique and related problems have used this

direct encoding style. An obvious drawback of the approach is that the direct

encoding allows infeasible solutions. The bit string of all zeros, for example,

corresponds to an invalid candidate cover with no vertices.

More importantly, the encoding allows infeasible solutions to be created from existing

feasible solutions using typical mutation and recombination operators found in EAs.

Previously reported work has typically attacked the problem with penalty functions, in

which the fitness of solutions that violate constraints is reduced, or with validation

procedures, in which infeasible solutions are corrected to some "nearby" valid

solution. Kommu compared two validation techniques with three different penalty

methods [12]. After lengthy empirical investigation on the VC problem sets of [15],

he concluded that the validation procedure based GAs performed somewhat better

than the various penalty methods as well as providing significantly better solutions

than traditional or PDI heuristics. Bäck and Khuri used a direct encoding with a

graded penalty function in their GA for IS [2]. They tested their algorithm with

randomly constructed graphs, as well as a class of scalable regular graphs. Aggarwal

and co-authors use a direct encoding along with a domain-specific "optimized

crossover" operator in their GA for IS [1]. Their crossover operation incorporates a

local search (NP-Hard in general) along with a validation procedure to correct

infeasible child solutions.

11

 CHAPTER 3

 ALGORITHMS FOR VERTEX-COVER PROBLEM

There are two types of algorithms: incomplete and complete ones. For complete

algorithms, it is guaranteed to find the optimum or true solution. Hence the solution

space is searched in principle completely. For incomplete algorithms, it is not ensured

that the true solution or the global optimum is found. But they are very often

sufficient for practical applications. This section outlines all existing algorithms to

solve vertex-cover problem. That are (1) Approximation algorithm, (2) Branch-and-

Bound algorithm (BB), (3) Greedy algorithm (4) Genetic algorithm (GA), (4) Primal-

dual based approach (PDA) and (5) Alom‘s algorithm.

3.1 Concepts of Approximation algorithm [1]

Many problems of practical significance are NP-complete but are too important to

abandon merely because obtaining an optimal solution is intractable. If a problem is

NP-complete, we are unlikely to find a polynomial-time algorithm for solving it

exactly, but even so, there may be a hope. There are at least three approaches to

getting around NP-completeness. First, if the actual inputs are small, an algorithm

with exponential running time may be perfectly satisfactory. Second, we may be able

to isolate important special cases that are solvable in polynomial time. Third, it may

still be possible to find near-optimal solutions in polynomial time (either in the worst

case or on average). In practice, near-optimality is often good enough. An algorithm

that returns near-optimal solutions is called an approximation algorithm.

3.1.1 Performance ratios for approximation algorithms

Suppose that we are working on an optimization problem in which each potential

solution has a positive cost, and we wish to find a near-optimal solution. Depending

on the problem, an optimal solution may be defined as one with maximum possible

cost or one with minimum possible cost; that is the problem may be either

maximization or a minimization problem.

12

We say that an algorithm for a problem has an approximation ratio of ρ(n) if, for

any input of size n, the cost c of the solution produced by the algorithm is within a

factor of ρ(n) of the cost c* of an optimal solution:

 Max(c/c*, c*/c) ≤ ρ (n)

We also call an algorithm that achieves an approximation ratio of ρ(n) a ρ(n)-

approximation algorithm. The definitions of approximation ratio and of ρ (n)-

approximation algorithm apply for both minimization and maximization problems.

 3.1.2 Existing approximation algorithm of vertex cover problem

1 C ← Ø

2 E′ ← E [G]

3 while E′ ≠ Ø

4 do let (u, v) be an arbitrary edge of E′

5 C ← C U {u, v}

6 remove every edge in E′ incident on u or v

7 return C

3.1.3 Explanation of the approximate vertex cover algorithm

Figure 3.1: Explanation of the approximate vertex cover algorithm

13

The solution of above graph according to the approximate algorithm is {b, c, d, e, f,

g}. This algorithm selects an arbitrary edge and removes the incident edges to it. This

process continues until to cover all the vertexes. At first edge (b, c) is chosen from

Fig. (b), then (b, a), (c, d) and (c, e) edges are discarded from the graph. Next arbitrary

edge (e, f) is chosen and edge (e, d) is discarded. Lastly arbitrary edge (d, g) is

chosen. After then no edge remains to be discarded. So the vertex cover set is {b, c, d,

e, f, g}.

3.1.4 Complexity Analysis of the approximate vertex cover algorithm

Since the loop in algorithm 3, on lines (3-6) repeatedly picks an edge (u, v) from E′

adds its endpoints u and v to C, and deletes all edges in E′ that are covered by either u

or v. The running time of this algorithm is O (E).

3.1.5 The APPROX_VERTEX_COVER has a bound ratio 2

Since this a minimization problem, we are interested in smallest possible c/c*.

Specifically we want to show c/c* ≤ 2 = p(n). In other words, we want to show that

APPROX-VERTEXCOVER algorithm returns a vertex-cover that is at most twice the

size of an optimal cover.

Proof: Let the set c and c* be the sets output by APPROX-VERTEX-COVER and

OPTIMAL-VERTEX-COVER respectively. Also, let A be the set of selected edges in

Fig. 1

by line 4. Because, we have added both vertices, we get c = 2|A| but OPTIMAL-

VERTEXCOVER would have added one of two. => c/c* ≤ p(n) = 2. Formally, since

no two edge in A are covered by the same vertex from c* (since, once an edge is

picked in line 4, all other edges that are incident on its endpoints are deleted from E`

in line 6) and we the lower bound: |c*| ≥ A---(1). On the size of an OPTIMAL-

VERTEX-COVER. In line 4 of figure-1, we picked both end points yielding an upper

bound on the size of Vertex-Cover. |c| ≤ 2|A| since, upper bound is an exact in this

case, we have

|c| = 2|A| ----------------------------------(2)

Take |c|/2 = |A| and put it in equation (1)

|c*| ≥ |c|/2

|c*|/|c| ≥ 1/2

|c*|/|c| ≤ 2 = p (n)

14

3.2 Greedy Technique [1, 3]

This is a simple method used to solve optimization problems. The problems that are

solved using the greedy method include finding the best order to execute a certain set

of jobs on a computer, finding the shortest path in graph, etc.

To solve an optimization problem, we look for a set of candidates constituting a

solution that optimizes (minimizes or maximizes, as the case may be) the value of the

objective function. A greedy algorithm proceeds step by step. Initially the set of

chosen candidates is empty. Then at each step, we try to add to this set the best

remaining candidates, our choice being guided by selection function. The selection

function is dependent on the problem at hand. For example, the selection function in

the case of minimum weight spanning tree picks an edge of minimum weight from the

remaining edges, an object with maximum profit per unit weight out of the remaining

objects is chosen for putting in the knapsack in the case of knapsack problem. If the

enlarged set of chosen candidates is no longer feasible, we remove the candidate we

just added: the candidate we tried and removed is never consider again. However, if

the enlarged set is still feasible, then the candidate we just added stays in the set of

chosen candidates from then on. Each time we enlarge the set of chosen candidates,

we check whether the set now constitutes a solution to the problem.

A popular method to construct successively space of solutions is greedy technique

that is based on the evident principle of taking the (local) best choice at each stage of

the algorithm in order to find the global optimum of some objective function.

A technique used in solving optimization problems [12]. Typically, we are given a set

of n inputs and the goal is to find a subset (or some output) that satisfies some

constraints. Any subset (or output) that satisfies these constraints is called a feasible

solution. In an optimization problem, we need to find a feasible solution that

maximizes or minimizes a given objective function. A feasible solution that does this

is called an optimal solution. The greedy technique works in stages, considering one

input at a time (typically in some clever order). At each stage, a decision is made

depending on whether it is best at this stage. For example, a simple criterion can be

whether adding the current input will lead to an infeasible solution or not. Thus, a

locally optimal choice is made in the hope that it will lead to a globally optimal

solution.

15

3.2.1 Basic steps to finding efficient greedy algorithms:

 Start by finding a dynamic programming style solution

 Prove that at each step of the recursion, the min/max can be satisfied by a

―greedy choice‖ (greedy substructure)

 Show that only one recursive call needs to be made once the greedy choice is

assumed. This is often natural when all the recursive calls are made by the

min/max.

 Find the recursive solution using the greedy choice

 Convert to an iterative algorithm if possible

More generally, taking the direct approach:

 Show the problem is reduced to a sub problem via a greedy choice

 Prove there is an optimal solution containing the greedy choice

 Prove that combining the greedy choice with an optimal solution for the

remaining sub problem yields an optimal solution

Example:

 For the MST problem: Prim‘s and Kruskal‘s algorithms

 For the SSSP problem: Dijkstra‘s algorithm

 Remember, Dijkstra only works for graphs with no negative edge weights.

Usually heuristic algorithms are used for problems that cannot be easily solved.

3.2.2 Greedy Algorithms of vertex-cover problem

 Algorithm1:

1. C ← Ø

2. while E ≠ Ø

3. Pick any edge e ∈E and choose an end-point v of e

4. C ← C U {v}

5. E ← E \ {e ∈ E : v ∈ e}

6. return C

3.2.3 Clever greedy algorithm [8]

1. C ← Ø

2. while E ≠ Ø

3. Pick a vertex v ∈V of maximum degree in the current graph

4. C ← C U {v}

16

5. E ← E \ {e ∈ E : v ∈ e}

6. return C

3.2.4 Greedy heuristic

 Cover as many edges as possible (vertex with the maximum degree) at each stage and

then delete the covered edges.

 The greedy heuristic cannot always find an optimal solution!

 The vertex-cover problem is NP-complete.

 (a) A graph instance (b) a vertex cover of size 5 (c) a vertex cover of

 obtained by the greedy size 4 optimal solution

 algorithm

 Figure 3.2: shows vertex cover by greedy algorithm

3.3 Branch-and-Bound Algorithm [2, 6]

Branch-and-bound (BB) is a general algorithm for finding optimal solutions of

various optimization problems, especially in discrete and combinatory optimization. It

consists of a systematic enumeration of all candidate solutions, where large subsets of

fruitless candidates are discarded, by using upper and lower estimated bounds of the

quantity being optimized.

Branch-and-bound is a technique for exploring an implicit directed acyclic graph like

the backtracking method. Optimal solutions to some problems like assignment of

tasks to workers, etc. can be found using the technique of branch-and-bound. The

branch-and-bound (BB) algorithm is a complete algorithm, meaning that it guarantees

the exact solution even though the time complexity may increase exponentially with

the graph size. As is also supported by the results presented in this paper, the

algorithm is often outperformed by stochastic methods, which can often reliably

locate the optimum after evaluating only a small portion of the search space.

17

The branch-and-bound algorithm recursively explores the full configuration space by

deciding about the presence or absence of one node in the cover in each step of the

recursion and recursively solving the problem for the remaining nodes. The full

configuration space can be seen as a tree where each level decides about the presence

or absence of one node and for each node there are two possible branches to follow;

one corresponds to selecting the node for the cover whereas the other corresponds to

ignoring the node. Technically, a covered node and all adjacent edges are removed,

while an ignored node remains, but may not be selected in deeper levels of the

recursion. The recursion explores the tree and backtracks when there are no more

edges to cover or when the bounding condition is met, as described shortly. When

backtracking, covered nodes are reinserted into the graph. Subsets of nodes that

provide valid vertex covers are identified and the smallest of them is the minimum

vertex cover. It is easy to see that in the worst case, the complexity of BB is upper-

bounded by the total number of nodes in the recursion tree, which is proportional to

2
n
.i.e o (2

n
).

The branch-and-bound vertex-cover algorithm goes through different partial vertex

covers by marking vertices as either covered or uncovered at each step. It backtracks

if it reaches a state, where all the available covering marks xN have been used. The

goal is to find a vertex-cover of size at most xN. The algorithm terminates, when it

has found a valid vertex-cover or if it has gone through all possible configurations.

The process of the algorithm is described by an configuration tree. In the

configuration tree a node specifies the current state of all the vertices of the graph.

All vertices are marked as free at the start of the algorithm. The algorithm proceeds by

marking a random free vertices as covered if the vertex has free or uncovered

neighbors. The size of the largest allowed vertex-cover is xN, where x ∈ [0,1] and

N=|V|. If the xN covering marks are not all used, the algorithm can go on with the tree

traversal, otherwise it has to backtrack. If the algorithm returns to the node by

backtracking, then the vertex is uncovered and the other branch in the configuration

tree is taken. If a node‘s all neighbours are covered, it is first marked as uncovered. A

simple bound is used to prune the configuration tree: don‘t mark a vertex uncovered,

if it has uncovered neighbours.

18

The bound applied in the following algorithm uses the current vertex degree d(i),

which is the number of uncovered neighbours at a specific stage of the calculation. By

covering a vertex i the total number of uncovered edges is reduced by exactly d(i). If

several vertices v1, v2, . . , vk are covered, the number of uncovered edges is at most

reduced by d(v1) + d(v2) + + d(vk). Assume that at a certain stage within the

backtracking tree, there are uncover E edges uncovered and still k vertices to cover.

Then a lower bound M for the minimum number of uncovered edges in the subtree is

given by M= Max[0,E-max d(v1)+d(v2)+. . .+d(vk)] .

The algorithm can avoid branching into a subtree if M is strictly larger than the

number opt of uncovered edges in the best solution found so far. For the order, the

vertices are selected to be (un-)covered within the algorithm, the following heuristic is

applied: the order of the vertices is given by their current degree. Thus, the first

descent into the tree is equivalent to the greedy heuristic presented before. Later, it

will become clear from the results that this heuristic is indeed not a bad strategy.

The following representation summarizes the algorithm for enumerating all

configurations exhibiting a minimum number of uncovered edges. Let G= (V, E) be a

graph, k the number of vertices to cover and uncov the number of edges to cover.

Initially k= x and uncov= |E|. The variable opt is initialized with opt = |E| and contains

the minimum number of uncovered edges found so far. The value of opt is passed via

call by reference. At the beginning all vertices i ∈ V are marked as free. The marks

are considered to be passed via call by reference as well (not shown explicitly).

Additionally, it is assumed that somewhere a set of (optimum) solutions can be stored.

3.3.1 Algorithm min-cover (G, k, uncov, opt) [7]

begin

if k = 0 then {leaf of tree reached?}

begin

if uncov < opt then {new minimum found?}

begin

opt := uncov;

clear set of stored configurations;

end;

store configuration;

19

end;

if bound condition is true (see text) then

return;

let i∈ V a vertex marked as free of maximal current degree;

mark i as covered;

k := k − 1;

adjust degrees of all neighbours j of i : d(j) := d(j) − 1;

min-cover(G, k, uncov − d(i), opt) {branch into ‗left‘ subtree};

mark i as uncovered;

k := k + 1;

(re)adjust degrees of all neighbours j of i: d(j):= d(j) + 1;

min-cover (G, k, uncov, opt) {branch into ‗right‘ subtree};

mark i as free;

end

In the actual implementation, the algorithm does not descend further into the tree as

well, when no uncovered edges are left. In this case, the vertex covers of the

corresponding subtree consist of the vertices covered so far and all possible selections

of k vertices among all uncovered vertices.

Finally, we note that using the concepts of restarts one can also turn a complete

backtracking algorithm into a (possibly) faster incomplete one.. The algorithm must

be randomized, for applying restarts. Hence the choice which vertex is treated next is

performed in some random way, similar to the generalized heuristic presented above.

By applying many restarts, rare events become important: on one hand, the latter may

have exponentially smaller search trees, i.e. in this case the algorithm by chance does

not need to backtrack as long as usual. On the other hand, events of this type are

exponentially rare. Balancing the exponential gain due to the smaller search tree

against the exponential loss due to large number of restarts required to find such an

event, an optimal backtracking (i.e. running) time per restart can be found.

20

3.4 Genetic Algorithm [4]

Genetic algorithm is an optimization technique based on the natural evolution. It

maintains a population of strings, called chromosomes that encode candidate solutions

to a problem. The algorithm selects some parent chromosomes from the population

set according to their fitness value, which are calculated using fitness function. The

fittest chromosomes have more chances of selection for genetic operations in next

generation. Different types of genetic operators are applied to the selected parent

chromosomes; possibly according to the probability of operator, and next generation

population set is produced. In every generation, a new set of artificial creatures is

created using bits and pieces of the fittest chromosomes of the old population.

Although GA is probabilistic, in most cases it produces better population compared to

their parent population because selected parents are the fittest among the whole

population set, and the worse chromosomes die off in successive generations. This

procedure is continued until some user defined termination criteria are satisfied.

In the genetic algorithm (GA), use the same representation of candidate solutions and

the same repair operator like local heuristic. GA starts by generating a random

population of candidate solutions. At each iteration, a population of promising

solutions is first selected. Variation operators are then applied to this selected

population to produce new candidate solutions. Specifically, crossover is applied to

exchange partial solutions between pairs of solutions and mutation is used to perturb

the resulting solutions. Here uniform crossover and bit-flip mutation is used to

produce new solutions. The new solutions are substituted into the original population

using restricted tournament replacement (RTR) [18]. The run is terminated when the

termination criteria are met.

 GA applies variation operators inspired by natural evolution and genetics. The fitness

function plays an important role in GA because it is used to decide how good a

chromosome is. Fitness function is the number of vertices used to cover all the edges

of the graph. M= 𝑉𝑖𝑣
𝑖=1 where Vi=1 if Vi ∈Vcover else 0

In HGA, one offspring is produced from two parent chromosomes. So, in that way

best 50% chromosomes will directly go in the next generation using reproduction. All

the chromosomes are used to create offspring using heuristic vertex crossover

operator (HVX). Because we believe that each chromosome has some important

21

genes, which may become useful to obtain global optimal solution. Then mutation

operator is applied to offspring. Mutation is used to avoid local minima and it should

be applied on all the offspring.

3.4.1 How genetic algorithm works

A genetic algorithm is generally started with a randomly generated population of

individuals. These individuals are potential solutions of the problem under study.

Three genetic operators, namely, selection, crossover and mutation work on these

individuals [20]. A selection method is used to select the individuals according to

their values, the selected individuals reproduce the nest generation. The crossover

operator recombines the individuals selected for reproduction with a pre-specified

probability of crossover. The mutation operator induces changes in the chromosomes

by complementing each bit of an individual with a pre-specified probability of

mutation.

Let G = (V, E), where G is undirected graph, V is the set of vertices and E denotes the

set of edges. VT and ET are vertex table and edge table respectively, v are vertices

(genes) of chromosome; P1 and P2 are two parent chromosomes selected for

crossover; in our case set of vertices for vertex cover. V’ is the solution for vertex

cover.

3.4.2 Algorithm HVX [10]

begin

V’ = { }

create tables VT and ET

VT = (F(v), N(v)), where F(v) is the frequency of the vertex v in P1 and P2,

N(v) is the degree of vertex v in G, for ∀ v ∈P1 and ∀ v ∈ P2

ET = E (x, y) for ∀ E∈ G

while ET <> { } do

select v1 ∈ VT such that N(v1) > N(v) for ∀ v ∈VT. If more than

one vertex has same number of degree then select that vertex, whose

frequency (F(v1)) is high. If still more than one vertex is candidate

for selection then select any vertex randomly. Say v1

ET = ET — {E(x, y) : x = v1 or y = v1)}

22

V’ = V’ — {v1}

end while

return V’

end

3.4.3 Explanation of genetic algorithm

Graph – 1 (Fig.3.3) is used to show how HVX works. Initially chromosomes are

generated randomly by selecting vertices one by one such that all the edges are

covered. In the successive generations, two chromosomes are selected on the basis of

fitness for the HVX. Suppose for Graph -1, two parent chromosomes P1, P2 are as

shown below,

 P1 = {1, 3, 4, 6} P2 = {1, 2, 3, 4}

 Figure 3.3: Graph-1 with 6 vertices and 9 edges

Now follow the procedure HVX as per below to produce offspring,

1. Create VT (Table 1) and ET (Table 2)

2. Select vertex with highest N (v) from VT. As shown in Table 3, for Run-1, it is

vertex 3

3. Remove all the edges from ET, which are connected to vertex 3

4. Add 3 to V‘

Repeat this procedure until ET becomes empty and N(v) = 0 for ∀ v ∈VT

23

Table 3.1: Vertex Table (VT) for Graph-1
Vertex (v) Frequency of Vertex in Parents

F(v)

Number of Edges Connected

to the vertex N(v)

1 2 4

2 1 4

3 2 5

4 2 3

5 0 2

6 1 2

Table3. 2: Edge Table (ET) for Graph-1

Vertex

1 2 3 4 5

2 1 3 4 6

3 1 2 4 5 6

4 1 2 3

5 1 3

6 2 3

Table 3.3: How HVX works is shown

Vertex

(V)
F(v) N(v) Run 1 v1 = 3

V‘={3}

N1(v1)

Run 2 v1 = 1

V‘= {3,1}

N2(v1)

Run 3 v1 = 2

V‘ = {3,1,2}

N3(v1)

1 2 4 3 0 0

2 1 4 3 2 0

3 2 5 0 0 0

4 2 3 2 1 0

6 1 2 1 1 0

3.5 Linear Programming Formulation [13]

Linear Programming is one of the most widely used and general techniques for

designing algorithms for NP-hard problems.

Def: A linear program is a collection of linear constraints on some real-valued vari-

ables with a linear objective function.

Every point in the feasible region is a feasible point, i.e., it is a pair of values that

satisfy all the constraints of the program. The feasible region is going to be a polytope

which is an n-dimensional volume all faces of which are at. The optimal solution is

24

either a minimum or a maximum, always occurs at a corner of the polytope (feasible

region). The extreme points (corners) are also called basic solutions.

 Figure 3.4: The feasible region in linear programming problem.

Linear programs can be solved in polynomial time. If you have n variables and m

constraints, then the linear program can be solved in time polynomial in n and m.

One way to solve a linear program is to:

1. Enumerate all extreme points of the polytope.

2. Check the values of the objective at each of the extreme points.

3. Pick the best extreme point.

The good thing about Linear Programs is that they give us a lower bound to any NP-

hard problem. If we take the NP-hard problem and reduce it to an Integer Program,

relax the Integer Program to a Linear Program and then solve the Linear Program, the

optimal solution to the Linear Program is a lower bound to the optimal solution for

the Integer Program (and thus the NP-hard problem). This is a very general way to

come up with lower bounds. Coming up with a good lower bound is the most

important step to coming up with a good approximation algorithm for the problem. So

this is a very important technique. Most of the work involved in this technique is

coming up with a good reduction to Integer Programming and a good rounding

technique to approximate the optimal fractional solution.

A linear program formulation (LP) for the vertex-cover problem can be written as

follows.

Given: G = (V, E) with weights w: V → ℝ+

Goal: Find the minimum cost subset of vertices such that every edge is incident on

some vertex in that subset.

25

1. Reducing Vertex Cover to an Integer Program

Let the variables be:

xv for v ∈ V where xv = 1 if v ∈ V C and xv = 0 otherwise.

Let the constraints be:

For all (u, v) ∈ E, xu + xv ≥1 (each edge has at least one vertex)

For all v ∈ V, xv ∈ {0, 1} (each vertex is either in the vertx cover or not)

We want to minimize v Wv .Xv (the total weight of the cover)

Note that all the constraints except the integrality constraints are linear and the

objective function is also linear because the wv are constants given to us. Thus this is

an Integer Linear Program.

2. Relax the Integer Program to a Linear Program

Now relax the integrality constraint xv ∈ {0, 1} to xv∈ [0, 1] to obtain a Linear

Program.

3. Find the optimal fractional solution to the Linear Program

Say x
*
 is the optimal fractional solution to the Linear Program.

Here is a 2-approximation for the problem of weighted vertex cover. So for this

problem:

Given: A graph G (V, E) with weight on vertex v as Wv.

Goal: To find a subset V‘  V

Goal: To find a subset V‘  V such that each edge e ∈ E has an end point in V‘ and

 Wv𝑣∈ V’ is minimized.

The Linear Program relaxation for the vertex cover problem can be formulated as:

The variables for this LP will be xv for each vertex v. So objective function is

 Min Wv𝑣

Subject to the constraints that xu + xv ≥1 ∀ (u, v) ∈ E

 xv ≥0 ∀∈ E

The Dual for this LP can be written with variables for each edge e∈ E as maximizing

its objective function:

 Max Yve∈ E

Subject to the constraints: Yuv v:(u,v) ∈ E

 Ye ≥ 0 ∀∈ E

26

These constraints in the linear program correspond to finding a matching in the graph

G and so the objective function becomes finding a maximum matching in the graph.

Hence, this is called the Matching LP.

3.6 Basic Primal-Dual Algorithm [14]

A primal-dual algorithm is an algorithm that starts with a feasible dual solution and an

infeasible primal one. Throughout its execution such an algorithm improves the dual-

objective function value of the kept dual solution and it reduces the degree of

infeasibility of the primal one at the same time. The algorithm terminates as soon as

the primal solution is feasible. The final dual solution is used as a lower-bound for the

optimum solution value by means of weak duality.

1. Start with x = 0 (variables of primal LP) and y = 0 (variables of dual LP). The

conditions that:

• y is feasible for Dual LP.

• Primal Complementary Slackness is satisfied.

are invariants and hence, hold for the algorithm. But the condition that:

• Dual Complementary Slackness is satisfied.

might not hold at the beginning of algorithm. x does not satisfy the primal LP as yet.

2. Raise some of the ye‘s, either simultaneously or one-by-one.

3. Whenever a dual constraint becomes tight, freeze values of corresponding y‘s and

raise value of corresponding x.

4. Repeat from Step 2 until all the constraints become tight.

 Now let us consider the primal-dual algorithm for vertex cover.

3.6.1 Primal-Dual Algorithm for Vertex Cover

1. Start with x = 0 and y = 0.

2. Pick any edge e for which ye is not frozen yet.

3. Raise the value of ye until some vertex constraint v goes tight.

4. Freeze all ye‘s for edges incident on v. Raise xv to 1.

5. Repeat until all ye‘s are frozen.

27

3.6.2 Explanation of the primal-dual algorithm

This is an example of how this algorithm works on an instance of the vertex cover

problem. We consider the following graph:

Example: Given below is a graph with weights assigned to vertices as shown in the

figure and we start with assigning ye = 0 for all edges e ∈ E.

 Figure 3.5: Explanation of primal-dual algorithm

So the algorithm proceeds as shown in the figure above. In steps (a)-(d), an edge is

picked for which ye is not frozen and the value of ye is raised until the corresponding

vertex constraint goes tight. All the edges incident on that vertex are then frozen and

value of xv is raised to 1.

28

 Figure 3.6: The Primal-dual solution

 When all the ye‘s getting frozen, the algorithm terminates. So the Value
of Primal=11 (3+4+2+2) and the Value of Dual=6(3+1+1+1).

Hence ,

 valp (x)≤ 2vald(y)
So, primal-dual algorithm is a 2-approximation.

3.6 Alom’s algorithm for Vertex Cover Problem [15]

 Monjurul alom presented a new algorithm for vertex cover problem that provides the

efficient approximate solution that is better than existing approximate algorithm,

greedy technique and genetic algorithm. This vertex cover algorithm selects the vertex

which has maximum number of edges incident to it. All the edges are discarded

incident to that vertex. If more than one vertex have same maximum number of edges,

this algorithm select that vertex which have at least one edge that is not covered by

other vertices, which has maximum edge. This process is repeated until to cover all

the vertices of the graph. This algorithm takes same time as the existing approximate

algorithm takes but it provides the solution that is always better than the approximate

solution.

1. OPTIMAL_VT_COVER (E, V) {// E is an edge and V is an vertex

2. V←;

3. E′ ←E [G]

4. While (E′ ≠ ) {

5. M ← Choose vertex which has maximum incident edge;

6. If (More than one vertex have maximum number of edges) then

29

7. M ← Choose that node which has at least one edge that is not covered by others

 Which have maximum number of edges.

8. V← VU M;

9. Remove the all incident edges at vertex M;

10. Count incident edge of new graph.}

11. Return V}

3.6.1 Explanation of the alom’s algorithm

Step1: Counting incident edges of all vertices in Figure 3.7, we see a=1, b=2, c=3,

d=4, e=3, f=2, g=1.

 Figure 3.7: Example of undirected graph

Step2: We find d has the maximum edges it is 4. Now discard all the edges incident to

d given in Figure-3.8

 Figure 3.8: Discarding the edges incident to vertex d

 Step 3: Again in Figure 3.8, the maximum edges are 2 that is in vertex b, c, and e.

But c has two edges that are covered by b and e. Now b and e both have two edges but

they have at least one edge that is not covered by other vertices c, which has

30

maximum edge, this algorithm select either b or e. Here we have chosen b. Remove

all the edges incident to b we have only c, e and f exists in Figure 3.9.

 Figure 3.9: Discarding all the edges incident to vertex b

Step 4: Counting edges of c, e and f in Figure 3.8 which represent c=1, e=2, f=1. Now

select e and the final graph is given in Figure 3.10.

 Figure 3.10: Graph representing the optimal vertex covering set

3.6.2 Complexity analysis of Alom’s algorithm

Since the number of iterations of the loop is at most E. So time complexity of this

Algorithm is O (E), where E is total no.of edges.

31

 CHAPTER 4

 PROBLEM STATEMENT

The problem is to find a vertex-cover of minimum size of in a given undirected graph.

The problem is NP-Hard. It is not very difficult to find an approximation algorithm

for the vertex-cover problem that returns a solution that is near to optimal. The size of

the vertex-cover returned by the algorithm is guaranteed to be no more than twice the

size of an optimal vertex-cover.

The minimum vertex cover problem is the optimization problem of finding a smallest

vertex cover in a given graph.

 INSTANCE: Given a graph G

 OUTPUT: Smallest number k such that there is a vertex cover S for G of

size k.

If the problem is stated as a decision problem, it is called the vertex cover problem:

 Equivalently, the problem can be stated as a decision problem:

 INSTANCE: Graph G and positive integer k.

 QUESTION: Is there a vertex cover S for G of size at most k?

Using this strategy we have to find better algorithm which gives nearest solution to

optimal.

All existing algorithms for vertex-cover problem will be studied and analyzed and a

new improved algorithm will be designed and implemented.

32

 CHAPTER 5

 RESULTS AND DISCUSSIONS

5.1 Analysis

This section presents and discusses the analysis of all presented algorithms and

complexity as shown below in the table. We illustrate the behavior of all studied

algorithms such as approximation algorithm, greedy algorithm, genetic algorithm,

alom‘s algorithm and primal-dual algorithm on the below graph.

 Figure 5.1: Graph (G) with 8 vertices

 Table 5.1: Adjacency list of graph (G)

Vertex

 (v)

Number of edges

connected to (v)

 connected edges

 a 4 b c e f

 b 3 a d g

 c 3 a d h

 d 4 b c i j

 e 3 a g k

 f 3 a h k

 g 3 b e i

 h 3 c f j

 i 3 d g k

 j 3 d h k

 k 4 e f i j

33

Table 5.2: Shows the comparison of all presented algorithms on graph (G)

Algorith

m type

Size of

vertex-

cover

Solution set Complexity Remarks

Branch

and

bound

5 {a,d,g,h,k} It grows

exponentially

fast with

problem size

for all values

of c.

1. BB is complete algorithm that is

ensured to find the minimum vertex

cover.

2. If no vertex cover of the desired size

is found, some covering marks have to

be removed and be placed elsewhere, i.e.

the algorithm has to backtrack.

Approxi

mation

10

6

6

{a,b,c,d,e,g,h,

i,j,k}

{b,c,g,h,i,k}

{b,c,e,f,i,j}

 O(V+E)

1. This gives different solutions but all

solutions near to optimal.

2. This is a polynomial-time 2-

approximation algorithm means that the

solution returned by algorithm is at most

twice the size of an optimal.

Greedy

Clever

greedy

7

5

{a,b,c,g,h,i,k}

{a,d,g,h,k}

O(V+E)

O (logV)

1. It is easy to find in some situations

where this algorithm fails to yield a

optimal solution.

2. Greedy algorithm is not a 2-

approximation

3. Clever greedy algorithm always gives

solutions better than simple greedy.

Genetic 6 {a,c,d,g,h,k} Time

complexity

measured by

the overall

number of

candidate

solutions

examined until

the optimum is

found.

1. GA is an optimization technique

based on the natural evolution.

2. GA fails to obtain consistent results

for specific type of regular graphs.

3. For large problems, the growth of the

number of evaluations required by GA

becomes faster.

4. It gives better results when it is

combined in to local optimization

technique.

34

5.2 Alom’s extended algorithm for Vertex Cover Problem

Alom‘s algorithm is extended in order to give the all possible vertex cover for

undirected graph.

The reason behind that for some larger graphs this algorithm may be fails to give

exact optimal solution. This algorithm gives all minimal vertex covers and minimum

vertex covers.

This paper presents a formal description of the algorithm. Given a simple graph G

with |V|= n vertices and |E|= m edges, this algorithm finds every possible minimal

vertex cover. This is followed by a small example illustrating the steps of the

algorithm.

OPTIMAL-VERTEX-COVER (V, E)

1. For i=1, 2, 3……n in turn

2. G
'
 =V —{vi} and E —{e∈E: vi∈e}

3. Apply the Algo1 on G
'

4. VC=V
' ∪ {vi}.

5. Return VC

Primal-

dual

 O(V log V+E) 1. It reduces the degree of infeasibility of

the primal one at the same time.

2. The algorithm terminates as soon as

the primal solution is feasible.

3. The final dual solution is used as a

lower-bound for the optimum solution

value by means of weak duality.

Alom‘s 5 {a,d,g,h,k} O(E) 1. It gives always optimal solution to the

given graph.

2. Complexity is same as with

approximation algorithm.

3. For larger graphs, may be this

algorithm lost to give an optimal

solution.

35

Algo1(V
'
 , E

'
) {

1. V
'
 ← ø

2. E
'
 ← E[G'

]

3. While E
'≠ ø {

4. Count incident edges of all vertices of graph G
'

5. Vm ← Choose a vertex which has maximum degree in the current graph;

6. If (More than one vertex have maximum number of edges) then

7. Vm ← Choose that vertex which has at least one edge that is not covered by

others which have maximum number of edges.

 Otherwise choose an arbitrary edge.

8. V
'
= V

'∪ Vm.

9. Remove the all incident edges of vertex Vm }

10. Return V
'
 }

 Figure 5.2: Example to show the steps of algorithm

 5.3 Explanation of the Alom’s extended algorithm

Step1: Remove the vertex a (v1) and all incident edges of a (v1) from G.

 Figure 5.3: Discarding all edges incident to a

36

Step2: Perform the Algo1 on G
'
 until all edges are removed.

Step3: Counting incident edges of all vertices in Figure-5.3 b=3, c=3, d=3, e=2,

f=2, g=3.

 Here the vertices b, c, d, g have maximum degree, But d has three edges that is

covered by b, c and g. Now b, c and g have three edges but they have at least one edge

that is not covered by other vertices, which has maximum edge, this algorithm select

b, c or g. Here b has chosen as an arbitrary edge and remove all incident edges to b.

 Figure 5.4: Discarding all edges incident to b

Step4: In fig5.4, c=2, d=2, e=2, f=2, g=3 choose g and discard all edges incident

to g.

 Figure 5.5: Discarding all edges incident to g

Step5: In fig5.5, c=2, d=1, e=1, f=0, now select c and remove all incident edges.

37

 Figure 5.6: Graph representing the optimal vertex covering set

 Step6: Return V
'
= {b, g, c}

Step7: Return VC= {a, b, c, g}

Repeat the same procedure for i=2, 3, 4,5,6,7. Then we obtain

Table 5.4: All possible vertex-covers

vertex Vertex Name Vertex cover

V1 a {a,b,c,g}

V2 b { a,b,c,g }

V3 c { a,b,c,g }

V4 d { a,b,d,e,f}

V5 e { a,b,d,e,f}

V6 f {a,c,d,e,f }

V7 g { a,b,c,g }

In this table, vertices V1, V2, V3, V7 produces minimum vertex cover and V4, V5, V6

produces minimal vertex cover.

5.4 Implementation

The efficient algorithm may be applied to any simple graph and will always terminate

in polynomial-time. Minimal vertex covers of a certain size will be found by applying

this algorithm. Specifically, we prove that every graph with n vertices and maximum

vertex degree must have a minimum vertex cover of size at most nn(+1)and

that the algorithm will always find a vertex cover of at most this size. Furthermore, it

is proved that this condition is the best possible in terms of n and by explicitly

constructing graphs for which the size of a minimum vertex cover is exactly

nn(+1). Demonstrate the algorithm with a C++ program style.

Implementation code is given in 43-45 pages.

38

 CHAPTER 6

 CONCLUSION

This thesis analyzed performance of the branch-and-bound (BB) algorithm and

several evolutionary algorithms on minimum vertex cover for standard classes of

random graphs. In addition to branch-and-bound (BB), greedy algorithm, simple

genetic algorithm (GA), primal dual algorithm (PDA) and alom‘s algorithm has been

considered. In branch-and-bound technique, we calculated a bound on the possible

value of any solution that might lie further on the graph. If the bound shows that any

solution must necessarily be worse than the best solution found so far, then we need

not go on exploring this part of the graph. The algorithm makes certain choices where

to put covering marks. If no vertex-cover of the desired size is found, some covering

marks have to be removed and be placed elsewhere, i.e. the algorithm has to

backtrack. This is done in a symmetric way allowing investigation of the full

configuration space.

Sometimes the approximation algorithm gives larger solution since the algorithm runs

by choosing the arbitrary edge of the graph. This is a polynomial-time 2-

approximation algorithm means that the solution returned by algorithm is at most

twice the size of an optimal, since we do not know what the size of the optimal vertex

cover is.

The greedy algorithm gives solutions better than approximation algorithm. The

algorithm always makes the choice that looks best at the moment. Clever greedy

algorithm always takes the vertex with the highest degree, add it to the cover set,

remove it from the graph, and repeats. But the greedy heuristic cannot always find an

optimal solution.

The genetic algorithm is slower than one local step of branch-and-bound. This is an

optimization technique based on the natural evolution and this is fails to obtain

consistent results for specific type of regular graphs. For large problems, the growth

of the number of evaluations required by GA becomes faster. The heuristic vertex

crossover (HVX) especially for minimum vertex cover problem, which works very

well and converges fast to optimal solution. With the help of HVX and LOT (local

39

optimization technique), we can achieve optimal solution with less number of

generation and population size.

The primal dual algorithm is only for weighted graphs and this is a 2-approximation

algorithm. It reduces the degree of infeasibility of the primal one at the same time.

The algorithm terminates as soon as the primal solution is feasible. The main goal of

the algorithm is to find a vertex cover of minimum total cost. The final dual solution

is used as a lower bound for the optimum solution value by means of weak duality.

In some cases, Greedy and genetic algorithms outperformed BB, which is not a

surprising result because BB is a complete method that guarantees that the global

optimum is found.

Finally, the alom‘s algorithm is the efficient algorithm for the vertex-cover problem

because it gives optimal solutions in most cases. In this algorithm also, we have to

choose an arbitary edge when the condition is coincide. So, for some larger graphs we

may lose the exact optimal solution by alom‘s algorithm. That‘s way the alom‘s

algorithm is extended in order to give the all possible solutions i.e all minimum

vertex-covers and all minimal vertex-covers. From these all possible solutions we can

easily choose the exact optimal solution which we want. But the complexity is more

and the extended alom‘s algorithm is implemented.

40

 ANNEXURE-I

 REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. McGraw-Hill, New York, 2nd edition, 2001.

[2] Miroslav Chleb and Janka Chleb, ―Crown reductions for the Minimum Weighted

Vertex Cover problem‖ Electronic Colloquium on Computational Complexity,

Report No. 101 (2004).

[3] M.R.Grarey, and D.S. Johnson, computers and intractability: A guide to the

Theory of NP-Completeness, freeman, (1978).

[4] Dorit S.Hochbaum ―Approximation Algorithms for NP-hard problems‖ (2002).

[5] X. Huang, J. Lai, and S. F. Jennings. Maximum common subgraph: Some upper

bound and lower bound results. BMC Bioinformatics, 7(Suppl 4):S6, 2006, pp.80-

94.

[6] M.Pelikan. Hierarchical Bayesian optimization algorithm: Toward a new

generation of evolutionary algorithms. Spr inger-Verlag, 2005, pp.102-160.

[7] Alexandra k hartmann and martin weigt ―statistical mechanics of the vertex-cover

problem‖, j.phys. A; Math. Gen. 36(2003) 11069-11093.

[8] K.clarkson, ―A modification to the greedy algorithm for the vertex cover

problem‖, IPL, vol 16:23-25,(1983).

[9] R. Arakaki, and L. Lorena, ―A Constructive Genetic Algorithm for the Maximal

Covering Location Problem‖, in Proceedings of Metaheuristics International

Conference, 2001, pp 13-17.

41

[10] Ketan Kotecha and Nilesh Gambhava ―A hybrid genetic algorithm for Minimum

Vertex-cover Problem‖, vol 2: pp 16-20.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

[12] R. Luling and B. Monien. Load balancing for distributed branch and bound

algorithms. In The 6
th

 International Parallel Processing Symposium, pages 543–

549, Los Alamitos, USA, 1992. IEEE Computer Society Press.

[13] R.Bar-Yehuda and S.even. A linear time approximation algorithm for the

weighted vertex cover problem. J. Algorithms, vol 2:198-203,(1981).

[14] S.khuller, U.vishkin and N.young. A primal-dual parallel approximation technique

applied to weighted set and vertex covers. J. Algorithms, 17(2):280–289, 1994.

[15] B.M.Monjurul Alom ―An Efficient Approximation Algorithm to solve the

Vertex cover Problem‖.

[16] P. Erdos and A. Renyi. On the evolution of random graphs. Publ. Math. Inst.

Hung. Acad. Sci., 5:17, 1960.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, New York, 1979.

[18] M. Weigt and A. K. Hartmann. The typical-case complexity of a vertex-covering

algorithm on finite-connectivity random graphs. Phys. Rev. Lett., 86:1658, 2001.

[19] K.Hartmann and M.Weigt.Phase Transitionsin Combinatorial Optimization

Problems. Wiley-VCH, Weinheim, 2005, pp.28-150.

[20] Bollobas. Random Graphs. Cambridge University Press, Cambridge, UK, 2nd

edition, 2001.

42

[21] K. Sastry. Evaluation-relaxation schemes for genetic and evolutionary algorithms.

Master‘s thesis, University of Illinois at Urbana-Champaign, Department of

General Engineering, Urbana, IL, 2001. Also IlliGAL Report No. 2002004.

[22] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted

vertex cover problem. Annals of Discrete Mathematics, 25:27–45, 1985.

[23] M. Mezard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of

random satisfiability problems. Science, 297:812, 2002.

[24] Pramanick I. and Kuhl, J. G. "A Practical Method for Computing Vertex Covers

for Large Graphs," in Proc. Intl. Symposium on Circuits and Systems pp. 1859-

1862, 1992.

[25] Weigt, M., & Hartmann, A. K. (2000a). Minimal vertex covers on finite-

connectivity random graphs — A hard-sphere lattice-gas picture. Phys. Rev. E,

63, 056127.

43

Implementation code

//program to find minimal vertex covers for a given graph

#include<stdio.h>

#include<iostream.h>

#include<conio.h>

#include<process.h>

#define dim 10

 //enter dimension of edjacency matrix of graph

void vertex_cover(int,int*); //prototype for vertex_cover

int main()

{

int i,j,*p,arr[dim][dim];

clrscr();

cout<<"enter matrix\n";

 //enter input as graph adjacency matrix

for(i=0;i<dim;i++)

 {

 for(j=0;j<dim;j++)

 cin>>arr[i][j];

 cout<<"\n";

 }

p=&arr[0][0];

for(i=0;i<dim;i++)

vertex_cover(i,p);

getch();

return 0;

}//end of main

void vertex_cover(int v,int *q)

 //this function produces several different vertex covers

{

int a[dim][dim],count,max=0,flag,x=0,i,j;

int degree[dim],vertices_maxdegree[dim],vc[dim],l=0,r;

for(i=0;i<dim;i++)

 {

 for(j=0;j<dim;j++)

 {

 a[i][j]=*q;

 q++;

 }

 }

//remove the incident edges of correspanding vertex

for(j=0;j<dim;j++)

 {

 if(a[v][j]==1)

 {

 a[v][j]=0;

 a[j][v]=0;

 }

 }

//until all edges are removed

while(1)

{

int k=0,flag=0;

44

//

for(i=0;i<dim;i++)

 {

 count=0;

 for(j=0;j<dim;j++)

 {

 if(a[i][j]==1)

 {

 flag++;

 count++;

 }

 }

 degree[i]=count;

 }

//if all edges are removed then stop

if(flag==0)

break;

//find maximum degree

max=degree[0];

for(i=1;i<dim;i++)

 {

 if(max<degree[i])

 max=degree[i];

 }

//find vertices of maximum degree

for(i=0;i<dim;i++)

 {

 if(max==degree[i])

 vertices_maxdegree[k++]=i;

 }

/*Choose that vertex which has at least one edge that is not covered by others

 which have maximum number of edges.

 Otherwise choose an arbitary edge.*/

for(i=0;i<k;i++)

 {

 x=0;

 for(j=0;j<dim;j++)

 {

 if(a[vertices_maxdegree[i]][j]==1)

 {

 for(r=0;r<k;r++)

 {

 if(j==vertices_maxdegree[r])

 x++;

 }

 }

 }

 if(x<max)

 break;

 }

if(i==k)

i=0;

vc[l++]=vertices_maxdegree[i];

//remove the incident edges of selected vertex

45

for(j=0;j<dim;j++)

 {

 if(a[vertices_maxdegree[i]][j]==1)

 {

 a[vertices_maxdegree[i]][j]=0;

 a[j][vertices_maxdegree[i]]=0;

 }

 }

}//end of while

vc[l++]=v;

//it prints the vertex cover

cout<<"\n vertex cover of v="<<v+1;

cout<<" {";

for(i=0;i<l;i++)

 {

 cout<<" "<<vc[i]+1;

 }

cout<<"}";

}//end of vertex_cover

46

 ANNEXURE-II

 LIST OF PUBLICATIONS

[1] K V R Kumar, Deepak Garg, ―Complete Algorithms on Minimum Vertex Cover‖

CIIT International Journal of Software Engineering and Technology, Issue May-

2009 ISSN 0974 – 9748 & Online: ISSN 0974 – 9632.

